检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海大学理学院,上海
出 处:《理论数学》2020年第8期726-740,共15页Pure Mathematics
摘 要:本文研究了含有复参数的一族广义复连分数共形迭代系统。Sumi等利用无限生成共形迭代系统理论研究了广义复连分数,得到了关于广义复连分数共形迭代系统极限集的Hausdorff维数的一系列结果。本文进一步将Sumi等研究的共形迭代系统的参数推广到更大的区域,对于这个具有更大参数空间的广义连分数共形迭代系统,证明了其极限集的Hausdorff维数在参数空间上是连续的,在参数空间内部是连续的且实解析和次调和的。并由此得到Hausdorff维数在参数空间的边界点上取到最大值。In this article, we consider a family of conformal iterated function systems (CIFSs) of generalized complex continued fractions with a complex parameter in a domain. Sumi et al. studied the general complex continued fractions by applying the theory of CIFSs generated by infinite many conformal maps, and got a series of interesting results. We further generalize the CIFS studied by Sumi et al. to a larger parameter domain. We prove that the Hausdorff dimension function of the limit sets of CIFSs of generalized complex continued fraction is continuous in the parameter domain and is real-analytic and subharmonic in the interior of the parameter domain. As a consequence, the Hausdorff dimension function assumes maximum value on the boundary of the parameter domain.
关 键 词:复连分数 共形迭代函数系统 极限集 HAUSDORFF维数
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.217.166.126