检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学理学院,江苏 南京
出 处:《理论数学》2021年第2期164-172,共9页Pure Mathematics
摘 要:在有界环形区域上,研究一类无穷Laplace方程的超定边值问题,证明方程解的对称性及环形区域的对称性。首先构造与点到边界距离有关的web函数作为方程特解,此特解的存在性等价于Ω为Stadium-like区域,通过对Stadium-like区域的性质分析,证明Ω为一个同心球环。该结论可以推广到Laplace方程与p-Laplace方程。The aim of this paper is to study a class of overdetermined boundary value problems of ∞-Laplace equations in bounded annular domains, and prove the symmetry of both the solutions and the annular domains. Firstly, we construct a web function which is related with the distance to the boundary as a special solution of ∞-Laplace equations. Then by analyzing the properties of stadi-um-like domains, we prove that Ω is a spherical ring with same center via the fact that the existence of special solutions is equivalent to that Ω is a stadium-like domain. Finally, we show that the conclusion can be extended to Laplace equations and p-Laplace equations.
关 键 词:无穷Laplace方程 超定边值问题 Stadium-Like区域 Web函数 对称性
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.119.99.38