检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《理论数学》2023年第9期2578-2586,共9页Pure Mathematics
摘 要:微积分中,定积分,二重积分,三重积分,第一类线面积分经常碰到积分区域区域有对称性,被积函数具有奇偶性的状况。如果针对每个积分列举偶倍奇零公式,则其繁杂程度超出学生的接受程度。如果要求学生根据这些公式来做题,则背离了高等教育的目的。特别对非数学专业的学生,微积分的教学应该提供给他们更为直观的解决方案!将所有的无方向的积分看作(广义)质量,则简单高效地解决了所有“偶倍奇零”问题。同时解决类似的含有对称性的积分问题!In calculus, the situation that the integration region has symmetry and the integrand has parity occur a lot in definite integrals, double integrals, triple integrals, line integrals of the first type, and area integrals of the first type, etc. If we list even-multiple-odd-zero formulas for each integral, the complexity is beyond the acceptance of students. If students are required to solve the problems by means of these formulas, it deviates from the purpose of higher education. The teaching of calculus should provide them with more intuitive solutions, especially for non-mathematics majors! We can solve all “even-multiple-odd-zero” problems simply and efficiently by treating all undirected integrals as (generalized) masses. At the same time, similar integration problems with symmetry can also be solved!
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49