检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:鲁东岳
机构地区:[1]辽宁师范大学数学学院,辽宁 大连
出 处:《理论数学》2023年第10期3088-3094,共7页Pure Mathematics
摘 要:图的交叉数的研究已经有几十年的历史,Garey和Johnson证明了确定一个图的交叉数是NP-完全问题。由于证明难度较大,国内外关于图的交叉数领域的研究进展缓慢。本文令cr(G)表示图G的交叉数,主要利用循环图C(16, 4)的一个分解{F1, F2, F12}对其交叉数进行研究。首先给出C(16, 4)交叉数为8的好的画法,得到交叉数的上界。然后采用反证法,将C(16, 4)的边集分成边不相交的3组,讨论所有可能情况,从而证得C(16, 4)的交叉数的下界。Cross numbers of graphs have been studied for decades, Garey and Johnson demonstrated that determining the cross numbers of a graph is an NP-complete problem. Because of the difficulty of proof, the research on the cross number of graphs at home and abroad is slow. In this paper, the cross number of a graph G is represented cr(G), and the cross number is studied by using a de-composition C(16, 4) of a cyclic graph C(16, 4). First of all, a good drawing of the cross number of 8 is given, and the upper bound of the cross number is obtained. Then we divide the edge set of C(16, 4) into 3 groups with disjoint edges, discuss all possible cases, and obtain the lower bound of the cross number.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.127