具有L2-约束的非线性Choquard方程的多解性  

Multiple Solutions for Nonlinear Choquard Equation with L2-Constraint

在线阅读下载全文

作  者:彭玉碧 

机构地区:[1]云南民族大学,数学与计算机科学学院,云南 昆明

出  处:《理论数学》2024年第1期65-78,共14页Pure Mathematics

摘  要:本文考虑如下非线性Choquard方程其中a,b > 0 ,α∈(0,3),是Riesz位势。g(ξ)∈C(ℝ, ℝ)满足Berestycki-Lions条件且其为奇或偶的。μ∈ℝ是Lagrange乘子。Wu证明了(1)关于(u,κ)等同于如下系统:在Palais-Smale-Pohozaev条件下,发展新的形变理论,使之在L2-约束问题中能应用极大极小理论并且证明该系统存在无穷多解,因此可证非线性Choquard方程也存在无穷多解。本文处理L2-约束问题,即∫ℝ3|u|2dx=m。In this paper, we consider the following nonlinear Choquard equation wherea,b > 0 ,α∈(0,3),is a Riesz potential. g(ξ)∈C(ℝ, ℝ) satisfies Berestycki-Lions condition and it is odd or even. μ∈ℝ is a Lagrange multiplier. Wu proved that (1) is equivalent to the following system with respect to (u,κ): We develop a new deformation argument under Palais-Smale-Pohozaev condition. It enables us to apply minimax argument for L2-constraint problem and we can prove the system exists infinitely many solutions, so we also prove Nonlinear Choquard Equation exists infinitely many solutions. In this paper, we deal with L2-constraint problem, i.e. ∫ℝ3|u|2dx=m.

关 键 词:非线性Choquard方程 RIESZ位势 多维奇路径 Berestycki-Lions条件 L2-约束问题 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象