具有Hadamard缺项幂级数的双曲完备极小曲面  

Hyperbolic Complete Minimal Surfaces with Power Series of Hadamard Gaps

在线阅读下载全文

作  者:邵煜 

机构地区:[1]上海理工大学理学院,上海

出  处:《理论数学》2024年第1期176-183,共8页Pure Mathematics

摘  要:对具有Hadamard间隙的某缺项幂级数增加或减弱适当的条件,利用Brito构造R3中位于两个平行平面间完备极小曲面族的方法,将和式拆分为三项估计项,利用Cauchy-Schwarz不等式对估计项进行放缩,修正并进一步精确范围以继续构造极小曲面,给出实例。在此基础上利用Weierstrass表示对寻找R3中一个完备极小曲面的Gauss映射。For a special power series with Hadamard gaps increasing or decreasing appropriate conditions, using Brito’s method of constructing a complete minimal surface family between two parallel planes in R3, the sum was split into three estimated terms, and Cauchy-Schwarz inequality was used to scale the estimated terms. The range was modified and further refined to continue the construction of minimal surfaces. Examples were given. On this basis, Weierstrass representation pair was used to find a Gauss map of a complete minimal surface in R3.

关 键 词:完备极小曲面 Hadamard缺项幂级数 Weierstrass表示对 CAUCHY-SCHWARZ不等式 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象