检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邵煜
机构地区:[1]上海理工大学理学院,上海
出 处:《理论数学》2024年第5期315-323,共9页Pure Mathematics
摘 要:在双曲完备极小曲面及Hadamard缺项幂级数的研究背景下,以Brito构造ℝ3中位于两个平行平面间完备极小曲面族的方法为基础,利用Holder不等式、Cauchy-Schwarz不等式对拆分成多项的|Ck|进行放缩,比较不同不等式的放缩效果,使得|Ck|尽可能小,从而使得h(z)适用条件扩大,且找到在某个范围条件下的双曲完备极小曲面族,丰富相关实例。In the context of the study on hyperbolic complete minimal surfaces and power series with Hadamard gaps, based on the method of Brito’s construction of a family of complete minimal surfaces between two parallel planes inℝ3, we use Holder inequality and Cauchy-Schwarz inequality to scale the|Ck|which is splited into multiple terms, and compare the scale effects of the different inequalities to make the|Ck|as small as possible, to make the applicable conditions ofh(z)wider. And families of hyperbolic complete minimal surfaces are found under a range of conditions, enriching the relevant examples.
关 键 词:完备极小曲面 Hadamard缺项幂级数 发散曲线 HOLDER不等式
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.132.48