检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]上海理工大学理学院,上海
出 处:《理论数学》2024年第5期525-536,共12页Pure Mathematics
摘 要:本文研究了网络上时滞相关脉冲的一般非线性时滞耦合系统的积分输入到状态稳定(iISS)性质。利用图论方法和Lyapunov-Krasovskii方法,在单个顶点系统iISS的Lyapunov函数的基础上,构造了整个网络iISS的Lyapunov函数,并推导出了网络上时滞相关脉冲的一般非线性时滞耦合系统存在iISS的充分条件。这些条件表明,如果每个节点上的连续时间系统都是iISS时,网络上时滞相关脉冲非线性时滞耦合系统在不稳定的脉冲出现的频率不太高的情况下仍能保证iISS的性质。This paper investigates the integral-input-to-state stability (iISS) of general nonlinear delayed impulsive coupled systems on networks with delay-dependent impulses. With the assistance of graph theory and the Lyapunov-Krasovskii method, an iISS Lyapunov function for the total network is constructed based on the iISS Lyapunov functions of individual vertex systems, and sufficient conditions for iISS for general nonlinear delayed impulsive coupled systems on networks are derived. It is demonstrated that, when every continuous vertex system is iISS, the nonlinear delayed impulsive coupled systems on networks can still maintain iISS property provided the destabilizing impulses do not occur too frequently.
关 键 词:耦合系统 积分输入到状态稳定性(iISS) 图论
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145