检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:仲卿照
机构地区:[1]山东大学数学学院,山东 济南
出 处:《统计学与应用》2021年第1期47-60,共14页Statistical and Application
摘 要:本文主要研究了基于朴素似然法、两种广义枢轴量法、带Diffuse先验和独立Jeffreys先验的贝叶斯方法对两个独立对数正态分布中位数之比的统计推断。我们通过模拟比较了五种置信区间在覆盖率、平均长度和相对偏度方面的性能。结果表明,两种广义置信区间和基于Diffuse先验的贝叶斯方法在覆盖率上普遍较优。而基于似然方法和独立Jeffreys先验的置信区间的平均长度较短。此外,给出了参数的极大似然估计和贝叶斯后验估计。同时,给出了单边假设检验的广义p值和后验概率比。并以PM2.5的实际数据为例,说明了该方法的统计推断。In this paper, we concentrate on statistical inferences for the ratio of medians of two independent log-normal distributions based on naive likelihood approach, generalized variable approach with two generalized pivot quantities (GPQ) and Bayesian approach with Diffuse prior and Independence Jeffreys’ prior. We compare the performance of the five confidence intervals in terms of the coverage probabilities, average length and relative bias by using simulations. The results show that the Bayesian approach based on Diffuse prior and two kinds of generalized confidence intervals are generally preferred in terms of coverage probability. However, confidence intervals based on likelihood and Independence Jeffreys’ prior have shorter average length. We also give the maximum likelihood estimator and Bayesian posterior estimation of estimated parameter. Simultaneously, the generalized p-values and posterior probability ratio for a one-sided hypothesis test are proposed. The statistical inference is illustrated using a real data example about PM2.5.
关 键 词:对数正态分布 极大似然估计 广义置信区间 广义P-值 贝叶斯推断 数值模拟
分 类 号:TP3[自动化与计算机技术—计算机科学与技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.226.170