检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河北高速公路集团有限公司京秦分公司,河北 秦皇岛 [2]河北工业大学电气工程学院,天津 [3]河北省交通规划设计研究院有限公司,河北 石家庄
出 处:《输配电工程与技术》2024年第4期53-63,共11页Transmission and Distribution Engineering and Technology
摘 要:随着高速公路的大力发展,特别是智慧公路的快速发展,高速公路基础设施建设逐步向数字化、信息化、智慧化方向转变。然而,数字化电力电子设备的广泛使用也带来了日益严重的电能质量问题,影响高速公路系统的正常运行和安全,增加了运营成本和维护难度。本文针对高速公路供电电能质量存在的问题,首先对现有电能质量评估指标的系统进行了归纳和总结,在此基础上,提出了一种基于时域卷积网络(TCN)和长短期记忆网络(LSTM)相结合的电能质量预测模型方法,并通过算例验证了该方法在提高预测准确性方面的优势。With the rapid development of highways, particularly smart highways, highway infrastructure construction is gradually transitioning towards digitalization, informatization, and intelligence. However, the widespread use of digital power electronic devices has led to increasingly severe power quality issues, which affect the normal operation and safety of highway systems, while also increasing operational costs and maintenance complexity. In response to the power quality problems in highway power supply systems, this paper first summarizes and organizes the existing power quality evaluation indices systematically. On this basis, a power quality prediction model is proposed, combining Temporal Convolutional Networks (TCN) and Long Short-Term Memory (LSTM) networks. The advantages of this method in improving prediction accuracy are demonstrated through case studies.
分 类 号:U41[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7