基于图像数据挖掘的产品设计方法研究  

Research on Product Design Methods Based on Image Data Mining

在线阅读下载全文

作  者:李月恩[1] 韩新志 

机构地区:[1]山东建筑大学艺术学院,山东 济南

出  处:《Design(汉斯)》2023年第4期2198-2204,共7页设计(汉斯)

摘  要:近年来,制造业逐渐向数字化、智能化和柔性化的方向转型。在产品设计开发领域,创新作为引领发展的第一动力应该适应时代变革,以更优的设计方法驱动产品迭代发展。研究提出将图像数据挖掘融入到设计流程中,经过图像采集、预处理,特征提取、数据分析等环节,得到一种由大数据驱动的数字化产品设计方法。研究使用交叉研究法对图像数据挖掘技术路线、智能算法与产品设计创新结合进行探索,多角度分析其价值和可行性。使用比较分析法对传统的设计方法与由图像数据驱动的设计方法在“创意”获取等多方面进行对比研究,突出采用数据挖掘技术的方法优势。通过分析数据驱动设计的作用机制,构建由图像数据挖掘驱动的产品设计方法模型。新的设计方法模型依托大数据快速生成设计概念,解决传统制造业中设计落后于时代的一系列难题,带动企业生产发展,推动设计行业进步。In recent years, the manufacturing industry has gradually transitioned towards digitization, intelligence, and flexibility. In the field of product design and development, innovation, as the first driving force for development, should adapt to the changes of the times and drive product iterative development with better design methods. The research proposes to integrate image data mining into the design process, through image acquisition, preprocessing, feature extraction, data analysis, and other processes, to obtain a digital product design method driven by big data. The study explores the combination of image data mining technology routes, intelligent algorithms, and product design innovation using cross research methods, and analyzes its value and feasibility from multiple perspectives. Comparative analysis is used to compare traditional design methods with image data-driven design methods in various aspects such as “creativity” acquisition, highlighting the advantages of using data mining techniques. By analyzing the mecha-nism of data-driven design, a product design method model driven by image data mining is constructed. The new design method model relies on big data to quickly generate design concepts, solve a series of problems in traditional manufacturing where design lags behind the times, drive the development of enterprise production, and promote the progress of the design industry.

关 键 词:图像数据挖掘 特征提取 算法驱动 产品设计 设计方法模型 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象