科学思维方法视域下数学分析概念的教学设计——以“定积分”和“对坐标的曲面积分”为例  

From the Point of Scientific Thinking the Teaching Design of Concepts in Mathematical Analysis—Taking “Definite Integral” and “Curved Surface Integral of Coordinate” as an Example

在线阅读下载全文

作  者:贾瑞玲 孙铭娟 邢巧芳 

机构地区:[1]信息工程大学,河南 郑州

出  处:《教育进展》2023年第1期324-331,共8页Advances in Education

摘  要:本文以“定积分”和“对坐标的曲面积分”为例探讨科学思维方法与数学概念教学的有机结合。通过实际问题引入,激发学生的学习兴趣。在问题探究中,从研究方法、技术路线、结构特征三个方面分析研究结果,然后引导学生抽象概括定积分和对坐标的曲面积分的概念。最后挖掘隐藏在知识背后的思政元素–科学思维方法,这亦是将思政教育渗透到教学实践中的具体表现。Taking the concepts of definite integral and curved surface integral of coordinate as an example, this paper discusses the organic combination of thinking method and mathematics concept teaching. Through the introduction of practical problems, it stimulates students’ interest in learning. In the discussion of the problem, we analyze the research results from three aspects: research method, technical route and structural characteristics, and then guide students to abstract and generalize the concepts of definite integral and curved surface integral of coordinate. Finally, we explore the ideological and political elements hidden behind knowledge-scientific thinking method, which is a reflection of the ideological and political education into teaching practice.

关 键 词:科学思维方法 思政教育 技术路线 结构特征 积分思想 

分 类 号:G641[文化科学—高等教育学] O172.2-4[文化科学—教育学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象