检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]杭州师范大学经亨颐教育学院,浙江 杭州 [2]杭州师范大学中国教育现代化研究院,浙江 杭州
出 处:《教育进展》2024年第7期623-632,共10页Advances in Education
摘 要:结合实践探索了基于算法一致性的“试商调商”学习路径,该学习路径为:算法衔接——提炼算法——熟悉算法——巩固算法——迁移算法,以“口诀试商,看余调商”的统一算法贯穿所有除数非整十数的除法运算,该优化算法能够帮助学生能深刻体会到除法运算算法的一致性并且能够有效迁移,在处理四位数除以两位数和四位数除以三位数具有较高的计算正确率。提出以下建议:教材编写可以参考该路径;教师要精心设计活动任务,重视引导学生经历试商、调商的过程,尤其是要重视建立起学生对于余数和除数关系的敏锐性。The learning path of “test quotient and adjust quotient” based on the consistency of algorithm is explored in practice, which is as follows: Algorithm articulation—Refinement of algorithm—Familiarization with algorithm—Consolidation of algorithm—Migration of algorithm—Consolidate the algorithm—Migrate the algorithm, and the unified algorithm of “test the quotient with the mnemonic, look at the balance and adjust the quotient” runs through all the division arithmetic operations whose divisors are not integers. The optimized algorithm can help students to deeply realize the consistency of the division algorithm and be able to transfer the algorithm effectively, so that they can have a high rate of correct calculation when dealing with four-digit division by two-digit numbers and four-digit division by three-digit numbers. The following suggestions are made: The teaching materials can refer to this path;teachers should carefully design the activity tasks, emphasize on guiding students to go through the process of trying quotients and adjusting quotients, and especially emphasize on building up students’ sensitivity to the relationship between remainders and divisors.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117