检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Louis Okotaka Ebale Aristide H. W. Nakavoua Landry Jean Pierre Gomat Louis Okotaka Ebale;Aristide H. W. Nakavoua;Landry Jean Pierre Gomat(Laboratory of Mechanics, Energetics and Engineering, Unesco Chair in Engineering Sciences Ecole Nationale Supérieure Polytechnique, Marien Ngouabi University, Brazzaville, Congo;Laboratory of Chemistry of Natural Substances (IRSEN), Brazzaville, Congo)
机构地区:[1]Laboratory of Mechanics, Energetics and Engineering, Unesco Chair in Engineering Sciences Ecole Nationale Supérieure Polytechnique, Marien Ngouabi University, Brazzaville, Congo [2]Laboratory of Chemistry of Natural Substances (IRSEN), Brazzaville, Congo
出 处:《Energy and Power Engineering》2020年第8期490-498,共9页能源与动力工程(英文)
摘 要:The main purpose of this study is to improve the energy efficiency of a refrigerated facility by means of exergetic analysis. In order to achieve this goal, we have evaluated the input exergy flows of the whole system to deduce the exergetic yields, which are compared to the degree of irreversibility in order to have a qualitative measurement of energy losses. The concept of exergy is the part of energy that is virtually converted into work. The exergetic analysis </span><span style="font-size:12px;font-family:Verdana;">was performed on a refrigeration unit ZR22K3E Copeland Scroll. The results of this analysis are consistent with the condition, that the exergetic performance, which is: 36.57% and it is approximately equal to the degree of irreversibility which is 37.50%. This approach provides a comprehensive, standard and rigorous framework for the analysis of energy systems, and thus for </span><span style="font-size:12px;font-family:Verdana;">the understanding and systemic management of the energy challenge.The main purpose of this study is to improve the energy efficiency of a refrigerated facility by means of exergetic analysis. In order to achieve this goal, we have evaluated the input exergy flows of the whole system to deduce the exergetic yields, which are compared to the degree of irreversibility in order to have a qualitative measurement of energy losses. The concept of exergy is the part of energy that is virtually converted into work. The exergetic analysis </span><span style="font-size:12px;font-family:Verdana;">was performed on a refrigeration unit ZR22K3E Copeland Scroll. The results of this analysis are consistent with the condition, that the exergetic performance, which is: 36.57% and it is approximately equal to the degree of irreversibility which is 37.50%. This approach provides a comprehensive, standard and rigorous framework for the analysis of energy systems, and thus for </span><span style="font-size:12px;font-family:Verdana;">the understanding and systemic management of the energy challenge.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7