Splitting of Gaussian Models via Adapted BML Method Pertaining to Cry-Based Diagnostic System  

Splitting of Gaussian Models via Adapted BML Method Pertaining to Cry-Based Diagnostic System

在线阅读下载全文

作  者:Hesam Farsaie Alaie Chakib Tadj 

机构地区:[1]Department of Electrical Engineering, écolede Technology Supérieure, Montréal, Canada

出  处:《Engineering(科研)》2013年第10期277-283,共7页工程(英文)(1947-3931)

摘  要:In this paper,we make use of the boosting method to introduce a new learning algorithm for Gaussian Mixture Models (GMMs) called adapted Boosted Mixture Learning (BML). The method possesses the ability to rectify the existing problems in other conventional techniques for estimating the GMM parameters, due in part to a new mixing-up strategy to increase the number of Gaussian components. The discriminative splitting idea is employed for Gaussian mixture densities followed by learning via the introduced method. Then, the GMM classifier was applied to distinguish between healthy infants and those that present a selected set of medical conditions. Each group includes both full-term and premature infants. Cry-pattern for each pathological condition is created by using the adapted BML method and 13-dimensional Mel-Frequency Cepstral Coefficients (MFCCs) feature vector. The test results demonstrate that the introduced method for training GMMs has a better performance than the traditional method based upon random splitting and EM-based re-estimation as a reference system in multi-pathological classification task.In this paper,we make use of the boosting method to introduce a new learning algorithm for Gaussian Mixture Models (GMMs) called adapted Boosted Mixture Learning (BML). The method possesses the ability to rectify the existing problems in other conventional techniques for estimating the GMM parameters, due in part to a new mixing-up strategy to increase the number of Gaussian components. The discriminative splitting idea is employed for Gaussian mixture densities followed by learning via the introduced method. Then, the GMM classifier was applied to distinguish between healthy infants and those that present a selected set of medical conditions. Each group includes both full-term and premature infants. Cry-pattern for each pathological condition is created by using the adapted BML method and 13-dimensional Mel-Frequency Cepstral Coefficients (MFCCs) feature vector. The test results demonstrate that the introduced method for training GMMs has a better performance than the traditional method based upon random splitting and EM-based re-estimation as a reference system in multi-pathological classification task.

关 键 词:Adapted Boosted MIXTURE Learning GAUSSIAN MIXTURE Model SPLITTING of GAUSSIANS Expected-Maximization Algorithm CRY SIGNALS 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象