Development and Evaluation of Intersection-Based Turning Movement Counts Framework Using Two Channel LiDAR Sensors  

Development and Evaluation of Intersection-Based Turning Movement Counts Framework Using Two Channel LiDAR Sensors

在线阅读下载全文

作  者:Ravi Jagirdar Joyoung Lee Dejan Besenski Min-Wook Kang Chaitanya Pathak Ravi Jagirdar;Joyoung Lee;Dejan Besenski;Min-Wook Kang;Chaitanya Pathak(Fastech Consulting Engineers, Hackensack, USA;John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, USA;Department of Civil, Coastal, & Environmental Engineering, University of South Alabama, Mobile, USA;HNTB Corporation, Parsippany, USA)

机构地区:[1]Fastech Consulting Engineers, Hackensack, USA [2]John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, USA [3]Department of Civil, Coastal, & Environmental Engineering, University of South Alabama, Mobile, USA [4]HNTB Corporation, Parsippany, USA

出  处:《Journal of Transportation Technologies》2023年第4期524-544,共21页交通科技期刊(英文)

摘  要:This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse sensor model, and a Kalman filter to obtain the final trajectories of an individual vehicle. The objective of applying K-means clustering is to robustly differentiate LiDAR data generated by pedestrians and multiple vehicles to identify their presence in the LiDAR’s field of view (FOV). To localize the detected vehicle, an inverse sensor model was used to calculate the accurate location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A constant velocity model based Kalman filter is defined to utilize the localized vehicle information to construct its trajectory by combining LiDAR data from the consecutive scanning cycles. To test the accuracy of the proposed methodology, the turning movement data was collected from busy intersections located in Newark, NJ. The results show that the proposed method can effectively develop the trajectories of the turning vehicles at the intersections and has an average accuracy of 83.8%. Obtained R-squared value for localizing the vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed method, it is compared with previously developed methods that focused on the application of multiple-channel LiDARs. The comparison shows that the proposed methodology utilizes two-channel LiDAR data effectively which has a low resolution of data cluster and can achieve acceptable accuracy compared to multiple-channel LiDARs and therefore can be used as a cost-effective measure for large-scale data collection of smart cities.This paper presents vehicle localization and tracking methodology to utilize two-channel LiDAR data for turning movement counts. The proposed methodology uniquely integrates a K-means clustering technique, an inverse sensor model, and a Kalman filter to obtain the final trajectories of an individual vehicle. The objective of applying K-means clustering is to robustly differentiate LiDAR data generated by pedestrians and multiple vehicles to identify their presence in the LiDAR’s field of view (FOV). To localize the detected vehicle, an inverse sensor model was used to calculate the accurate location of the vehicles in the LiDAR’s FOV with a known LiDAR position. A constant velocity model based Kalman filter is defined to utilize the localized vehicle information to construct its trajectory by combining LiDAR data from the consecutive scanning cycles. To test the accuracy of the proposed methodology, the turning movement data was collected from busy intersections located in Newark, NJ. The results show that the proposed method can effectively develop the trajectories of the turning vehicles at the intersections and has an average accuracy of 83.8%. Obtained R-squared value for localizing the vehicles ranges from 0.87 to 0.89. To measure the accuracy of the proposed method, it is compared with previously developed methods that focused on the application of multiple-channel LiDARs. The comparison shows that the proposed methodology utilizes two-channel LiDAR data effectively which has a low resolution of data cluster and can achieve acceptable accuracy compared to multiple-channel LiDARs and therefore can be used as a cost-effective measure for large-scale data collection of smart cities.

关 键 词:Vehicle Trajectory Construction Two Channel LiDAR Turning Movement Counts RTMS Smart Cities LIDAR 

分 类 号:TP3[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象