机构地区:[1]Department of Food Science and Technology, Faculty of Agricultural and Engineering Technology, Bogor Agricultural University, Bogor, Indonesia [2]Southeast Asian Food and Agricultural Science and Technology Center, Bogor Agricultural University, Indonesia
出 处:《World Journal of Engineering and Technology》2015年第3期26-30,共5页世界工程和技术(英文)
摘 要:Indonesia is the largest palm oil producer in the world. The content of β-carotene in palm oil, which can act as pro-vitamin A, is relatively high, so it has great potential for overcoming cases of vitamin A deficiency. By microencapsulation process of palm oil, β-carotene content in palm oil will be more stable and have a longer shelf life. There are three methods of microencapsulation used in this study, namely coacervation, thin-layer drying, and SiO2 absorption technique, which theoretically are suitable for encapsulating β-carotene in palm oil. The aim of this research is to compare and find the most suitable method of microencapsulation process of palm oil to obtain the highest β-carotene content and retention. Results show that those three methods are significantly different in affecting water absorption, solubility in water, yield, microencapsulation efficiency, β-carotene content, and retention of microencapsulated palm oil. The microencapsulated palm oil made from thin layer drying method has the highest β-carotene content at 200.16 μg/g and β-carotene retention of 68.89%. It also has low water absorption and high water solubility, so it can be applied as a powder premix in food as vitamin A supplement.Indonesia is the largest palm oil producer in the world. The content of β-carotene in palm oil, which can act as pro-vitamin A, is relatively high, so it has great potential for overcoming cases of vitamin A deficiency. By microencapsulation process of palm oil, β-carotene content in palm oil will be more stable and have a longer shelf life. There are three methods of microencapsulation used in this study, namely coacervation, thin-layer drying, and SiO2 absorption technique, which theoretically are suitable for encapsulating β-carotene in palm oil. The aim of this research is to compare and find the most suitable method of microencapsulation process of palm oil to obtain the highest β-carotene content and retention. Results show that those three methods are significantly different in affecting water absorption, solubility in water, yield, microencapsulation efficiency, β-carotene content, and retention of microencapsulated palm oil. The microencapsulated palm oil made from thin layer drying method has the highest β-carotene content at 200.16 μg/g and β-carotene retention of 68.89%. It also has low water absorption and high water solubility, so it can be applied as a powder premix in food as vitamin A supplement.
关 键 词:Β-CAROTENE MICROENCAPSULATION PALM Oil Thin Layer DRYING VITAMIN A
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...