机构地区:[1]Division of Craniomaxillofacial Surgery, Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan [2]Division of Oral Oncology, Department of Oral and Maxillofacial Surgery, School of Dentistry, Showa University, Tokyo, Japan
出 处:《Case Reports in Clinical Medicine》2015年第3期85-92,共8页临床医学病理报告(英文)
摘 要:Craniomaxillofacial surgery is difficult due to the complexity of the regional anatomy. Computer-assisted surgery is a promising tool aiming to improve the safety and precision of such surgery. A computer-assisted surgical navigation approach for reconstruction of mandibular defects using a patient-specific titanium mesh tray and particulate cancellous bone and marrow (PCBM) harvested from bilateral anterior ilia is proposed. This case report involves a large multicystic ameloblastoma affecting the right mandible of a 31-year-old male patient. Following detailed clinical examination, radiological interpretation, and histopathological diagnosis, computer-assisted surgical simulation with a virtual 3-dimensional (3-D) model was designed using surgical planning software based on the pre-operative computed tomography data. Long-span segmental resection of the mandible was planned, and the defect was analyzed for reconstruction using a patient-specific reconstruction titanium mesh tray mediated with computer-aided design and manufacturing (CAD/CAM) techniques. During the actual surgery, the ultrasonic bone cutting instrument in the surgeon’s hand was connected to the navigation system to touch an anatomical position on the patient. Therefore, osteotomies were performed finely and smoothly according to the navigation images of the cutting bone line by sequentially moving the instrument. Finally, a CAD/CAM-mediated titanium mesh tray condensed by PCBM was adapted to the remaining mandibular fragments. Six months postoperatively, the patient had a good mandibular configuration and facial contour. Integration of different technologies, such as software planning and 3-D surgical simulation, combined with intraoperative navigation and CAD/CAM techniques, provides safe and precise mandibular reconstruction surgery.Craniomaxillofacial surgery is difficult due to the complexity of the regional anatomy. Computer-assisted surgery is a promising tool aiming to improve the safety and precision of such surgery. A computer-assisted surgical navigation approach for reconstruction of mandibular defects using a patient-specific titanium mesh tray and particulate cancellous bone and marrow (PCBM) harvested from bilateral anterior ilia is proposed. This case report involves a large multicystic ameloblastoma affecting the right mandible of a 31-year-old male patient. Following detailed clinical examination, radiological interpretation, and histopathological diagnosis, computer-assisted surgical simulation with a virtual 3-dimensional (3-D) model was designed using surgical planning software based on the pre-operative computed tomography data. Long-span segmental resection of the mandible was planned, and the defect was analyzed for reconstruction using a patient-specific reconstruction titanium mesh tray mediated with computer-aided design and manufacturing (CAD/CAM) techniques. During the actual surgery, the ultrasonic bone cutting instrument in the surgeon’s hand was connected to the navigation system to touch an anatomical position on the patient. Therefore, osteotomies were performed finely and smoothly according to the navigation images of the cutting bone line by sequentially moving the instrument. Finally, a CAD/CAM-mediated titanium mesh tray condensed by PCBM was adapted to the remaining mandibular fragments. Six months postoperatively, the patient had a good mandibular configuration and facial contour. Integration of different technologies, such as software planning and 3-D surgical simulation, combined with intraoperative navigation and CAD/CAM techniques, provides safe and precise mandibular reconstruction surgery.
关 键 词:PATIENT-SPECIFIC Titanium Mesh TRAY Computer-Assisted Surgery MANDIBULAR Reconstruction PARTICULATE CANCELLOUS Bone and MARROW Surgical Navigation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...