机构地区:[1]Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Tokyo, Japan [2]Department of Biology, College of Liberal Arts and Sciences, Tokyo Medical and Dental University, Chiba, Japan
出 处:《Journal of Behavioral and Brain Science》2022年第12期640-657,共18页行为与脑科学期刊(英文)
摘 要:Melatonin (MEL) has been reported to have acute enhancing effects on some aspects of cognition. Recently, we revealed that N1-acetyl-5-methoxyquinuramine (AMK), a brain metabolite of MEL, is much more potent than MEL in converting short-term memory (STM) to long-term memory (LTM) with a single administration immediately after the acquisition trial of the novel object recognition (NOR) task. These data suggest that the memory-enhancing effects of MEL may be mediated by mechanisms independent of the activation of MEL MT1 and MT2 receptors. In the present study, we examined the contribution of MT1 and MT2 receptor-mediated and non-receptor-mediated mechanisms to the acute memory-enhancing effects of MEL using NOR task. Mice were administered with either MEL, AMK, or a highly selective MT1/MT2 receptor agonist ramelteon (RAM) immediately after the acquisition trial and the effects of varying doses of these drugs on both STM and LTM performance were compared. We found that both AMK and RAM were more potent than MEL in both facilitating STM and promoting LTM formation. We also found that pretreatment with luzindole, a MT1/MT2 receptor antagonist, markedly suppressed only the effects of RAM. These results suggest that acutely administered MEL enhances NOR memory through both MT1 and MT2 receptor-mediated and non-receptor-mediated mechanisms.Melatonin (MEL) has been reported to have acute enhancing effects on some aspects of cognition. Recently, we revealed that N1-acetyl-5-methoxyquinuramine (AMK), a brain metabolite of MEL, is much more potent than MEL in converting short-term memory (STM) to long-term memory (LTM) with a single administration immediately after the acquisition trial of the novel object recognition (NOR) task. These data suggest that the memory-enhancing effects of MEL may be mediated by mechanisms independent of the activation of MEL MT1 and MT2 receptors. In the present study, we examined the contribution of MT1 and MT2 receptor-mediated and non-receptor-mediated mechanisms to the acute memory-enhancing effects of MEL using NOR task. Mice were administered with either MEL, AMK, or a highly selective MT1/MT2 receptor agonist ramelteon (RAM) immediately after the acquisition trial and the effects of varying doses of these drugs on both STM and LTM performance were compared. We found that both AMK and RAM were more potent than MEL in both facilitating STM and promoting LTM formation. We also found that pretreatment with luzindole, a MT1/MT2 receptor antagonist, markedly suppressed only the effects of RAM. These results suggest that acutely administered MEL enhances NOR memory through both MT1 and MT2 receptor-mediated and non-receptor-mediated mechanisms.
关 键 词:MELATONIN N1-Acetyl-5-Methoxykynuramine Ramelteon Novel Object Recognition Memory Melatonin Receptors
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...