A Reaction-Diffusion Algorithm for Segmentation of Three-Dimensional Sinusoidal Networks in Rats Fed a High-Fat and High-Cholesterol Diet: New Insights and Evaluation  被引量:2

A Reaction-Diffusion Algorithm for Segmentation of Three-Dimensional Sinusoidal Networks in Rats Fed a High-Fat and High-Cholesterol Diet: New Insights and Evaluation

在线阅读下载全文

作  者:Hiroto Shoji 

机构地区:[1]Science and Technology, Kwansei Gakuin University, Sanda, Japan

出  处:《Journal of Biosciences and Medicines》2018年第10期22-32,共11页生物科学与医学(英文)

摘  要:Microstructures in the liver are primarily composed of hepatocytes, hepatic blood, and biliary vessels. Because each hepatocyte comes in contact with both vessels, these vessels form three-dimensional (3D) periodic network patterns. Confocal microscope images are useful for observing 3D structures;however, it is necessary to explicitly describe the vessel structures using 3D images of sinusoidal endothelial cells. For this purpose, we propose a new approach for image segmentation based on the Turing reaction-diffusion model, in which temporal and spatial patterns are self-organized. Turing conditions provided reliable tools for describing the 3D structures. Moreover, using the proposed method, the sinusoidal patterns of rats fed a high-fat/high-cholesterol diet were examined;these rats exhibited pathological features similar to those of human patients with nonalcoholic steatohepatitis related to metabolic syndrome. The findings showed that the parameter in diffusion terms differed significantly among the experimental groups. This observation provided a heuristic argument for parameter selection leading to pattern recognition problems in diseased rats.Microstructures in the liver are primarily composed of hepatocytes, hepatic blood, and biliary vessels. Because each hepatocyte comes in contact with both vessels, these vessels form three-dimensional (3D) periodic network patterns. Confocal microscope images are useful for observing 3D structures;however, it is necessary to explicitly describe the vessel structures using 3D images of sinusoidal endothelial cells. For this purpose, we propose a new approach for image segmentation based on the Turing reaction-diffusion model, in which temporal and spatial patterns are self-organized. Turing conditions provided reliable tools for describing the 3D structures. Moreover, using the proposed method, the sinusoidal patterns of rats fed a high-fat/high-cholesterol diet were examined;these rats exhibited pathological features similar to those of human patients with nonalcoholic steatohepatitis related to metabolic syndrome. The findings showed that the parameter in diffusion terms differed significantly among the experimental groups. This observation provided a heuristic argument for parameter selection leading to pattern recognition problems in diseased rats.

关 键 词:TURING REACTION-DIFFUSION SINUSOID 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象