Using Poisson Modeling and Queuing Theory to Optimize Staffing and Decrease Patient Wait Time in the Emergency Department  被引量:2

Using Poisson Modeling and Queuing Theory to Optimize Staffing and Decrease Patient Wait Time in the Emergency Department

在线阅读下载全文

作  者:Geralda Xavier Joseph Crane Michele Follen Wendy Wilcox Steven Pulitzer Chuck Noon 

机构地区:[1]Kings County Hospital, Brooklyn, NY, USA [2]Haslam College of Business, University of Tennessee, Knoxville, TN, USA [3]Teamhealth Inc., Knoxville, TN, USA

出  处:《Open Journal of Emergency Medicine》2018年第3期54-72,共19页急诊医学(英文)

摘  要:Introduction: Studies have shown Emergency Department (ED) crowding contributes to reduced quality of patient care, delays in starting treatments, and increased number of patients leaving without being seen. This analysis shows how to theoretically and optimally align staffing to demand. Methods: The ED value stream was identified and mapped. Patients were stratified into three resource-driven care flow cells based on the severity indices. Time observations were conducted for each of the key care team members and the manual cycle times and service rate were calculated and stratified by severity indices. Using X32 Healthcare’s Online Staffing Optimization (OSO) tool, staffing inefficiencies were identified and an optimal schedule was created for each provider group. Results: Lower Severity Indices (higher acuity patient) led to longer times for providers, nurses, patient care assistants, and clerks. The patient length of stay varied from under one hour to over five hours. The flow of patients varied considerably over the 24 hours’ period but was similar by day of the week. Using flow data, we showed that we needed more nurses, more care team members during peak times of patient flow. Eight hour shifts would allow better flexibility. We showed that the additional salary hours added to the budget would be made up for by increased revenue recognized by decreasing the number of patients who leave without being seen. Conclusion: If implemented, these changes will improve ED flow by using lean tools and principles, ultimately leading to timeliness of care, reduced waits, and improved patient experience.Introduction: Studies have shown Emergency Department (ED) crowding contributes to reduced quality of patient care, delays in starting treatments, and increased number of patients leaving without being seen. This analysis shows how to theoretically and optimally align staffing to demand. Methods: The ED value stream was identified and mapped. Patients were stratified into three resource-driven care flow cells based on the severity indices. Time observations were conducted for each of the key care team members and the manual cycle times and service rate were calculated and stratified by severity indices. Using X32 Healthcare’s Online Staffing Optimization (OSO) tool, staffing inefficiencies were identified and an optimal schedule was created for each provider group. Results: Lower Severity Indices (higher acuity patient) led to longer times for providers, nurses, patient care assistants, and clerks. The patient length of stay varied from under one hour to over five hours. The flow of patients varied considerably over the 24 hours’ period but was similar by day of the week. Using flow data, we showed that we needed more nurses, more care team members during peak times of patient flow. Eight hour shifts would allow better flexibility. We showed that the additional salary hours added to the budget would be made up for by increased revenue recognized by decreasing the number of patients who leave without being seen. Conclusion: If implemented, these changes will improve ED flow by using lean tools and principles, ultimately leading to timeliness of care, reduced waits, and improved patient experience.

关 键 词:POISSON Modeling QUEUING Theory REDUCED Waits Improved PATIENT Experience 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象