检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Claus Kiefer
出 处:《Open Journal of Medical Imaging》2014年第3期154-158,共5页医学影像期刊(英文)
摘 要:Purpose: To increase the efficiency of densely encoded magnetization transfer imaging of the brain, we time-multiplex multiple slices within the same readout using simultaneous echo refocusing FLASH imaging with magnetization transfer (MT) preparation (MT-SER-FLASH). Materials and Methods: Inefficiency in total scan time results from the number of frequency samples needed for sufficient quality of quantitative parameter maps for a binary spin bath model. We present a highly efficient multiplexing method, simultaneous echo refocused magnetization transfer imaging (MT-SER-FLASH) for reducing the total scan time of MT imaging by one-third. The specific absorption rate (SAR) was also reduced by reducing the number of MT-pulses per volume. Results: 2D-MT-SER-FLASH is performed in 19 minutes rather than 1 hour, acceptable for routine clinical application. The SAR could be reduced to 69% instead of more than 100% with a standard 2D or 3D-FLASH with MT-preparation. Conclusion: The net reduction of scan time and SAR enables the use of quantitative model based magnetization transfer imaging within a clinical environment.Purpose: To increase the efficiency of densely encoded magnetization transfer imaging of the brain, we time-multiplex multiple slices within the same readout using simultaneous echo refocusing FLASH imaging with magnetization transfer (MT) preparation (MT-SER-FLASH). Materials and Methods: Inefficiency in total scan time results from the number of frequency samples needed for sufficient quality of quantitative parameter maps for a binary spin bath model. We present a highly efficient multiplexing method, simultaneous echo refocused magnetization transfer imaging (MT-SER-FLASH) for reducing the total scan time of MT imaging by one-third. The specific absorption rate (SAR) was also reduced by reducing the number of MT-pulses per volume. Results: 2D-MT-SER-FLASH is performed in 19 minutes rather than 1 hour, acceptable for routine clinical application. The SAR could be reduced to 69% instead of more than 100% with a standard 2D or 3D-FLASH with MT-preparation. Conclusion: The net reduction of scan time and SAR enables the use of quantitative model based magnetization transfer imaging within a clinical environment.
关 键 词:MRI MAGNETIZATION Transfer IMAGING Fast IMAGING Pulse SEQUENCES SIMULTANEOUS ECHO REFOCUSING
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.201