Association of Serum Antioxidant Enzymes and Nervous Tissue Markers in Hypertensive Patients  

在线阅读下载全文

作  者:Marisol Pena-Sanchez Sergio Gonzalez-Garcia Gretel Riveron-Forment Otman Fernandez-Concepcion Olivia Martinez-Bonne Gisselle Lemus-Molina Isabel Fernandez-Almirall Maria de la Caridad Menendez-Sainz Alina Gonzalez-Quevedo Janis TEells 

机构地区:[1]Institute of Neurology and Neurosurgery,Havana,Cuba [2]National Genetic Center,Havana,Cuba [3]College of Health Sciences,University of Wisconsin-Milwaukee,Milwaukee,USA

出  处:《World Journal of Cardiovascular Diseases》2014年第4期160-168,共9页心血管病(英文)

摘  要:Background and Purpose: Hypertension has serious effects on cerebral blood vessels. Oxidative stress seems to be implicated in blood pressure elevation, through increased reactive oxygen species and/or decreased antioxidant capacity. Recently blood markers indicating damage to the central nervous system were reported to be increased in hypertensive patients. However, it is unknown whether antioxidant capacity is related to these changes. This study was designed to explore if the concentration of blood markers for nervous tissue damage was associated to antioxidant capacity in hypertensive patients. Methods: Twenty hypertensive patients and 23 healthy controls were studied. They were paired by age, sex, ethnicity, or risk factors. Serum neuron specific enolase (NSE) and S100 calcium binding protein B (S100B) were measured as nervous tissue damage markers, as well as the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase and gamma-glutamyltransferase). Results: Serum neuronal specific enolase (NSE) and S100 calcium binding protein B (S100B) concentrations determined by immunoassay were significantly increased in patients vs. controls. The activities of antioxidant enzymes measured by spectrophotometry showed that plasmatic catalase and erythrocytic glutathione peroxidase were significantly increased in patients, but erythocytic catalase was decreased. Gamma-glutamyltransferase activity was significantly correlated with S100B in hypertensive patients, while erythrocytic catalase activity was decreased in subjects with higher NSE levels. Conclusion: This preliminary investigation suggested that antioxidant status might be modulated through changes in antioxidant enzymatic activity in hypertensive patients. The association of some of these changes with peripheral markers of damage to the central nervous system could indicate that the increased levels of these proteins in hypertension are partly related to oxidative stress.Background and Purpose: Hypertension has serious effects on cerebral blood vessels. Oxidative stress seems to be implicated in blood pressure elevation, through increased reactive oxygen species and/or decreased antioxidant capacity. Recently blood markers indicating damage to the central nervous system were reported to be increased in hypertensive patients. However, it is unknown whether antioxidant capacity is related to these changes. This study was designed to explore if the concentration of blood markers for nervous tissue damage was associated to antioxidant capacity in hypertensive patients. Methods: Twenty hypertensive patients and 23 healthy controls were studied. They were paired by age, sex, ethnicity, or risk factors. Serum neuron specific enolase (NSE) and S100 calcium binding protein B (S100B) were measured as nervous tissue damage markers, as well as the activity of antioxidant enzymes (catalase, glutathione peroxidase, glutathione reductase and gamma-glutamyltransferase). Results: Serum neuronal specific enolase (NSE) and S100 calcium binding protein B (S100B) concentrations determined by immunoassay were significantly increased in patients vs. controls. The activities of antioxidant enzymes measured by spectrophotometry showed that plasmatic catalase and erythrocytic glutathione peroxidase were significantly increased in patients, but erythocytic catalase was decreased. Gamma-glutamyltransferase activity was significantly correlated with S100B in hypertensive patients, while erythrocytic catalase activity was decreased in subjects with higher NSE levels. Conclusion: This preliminary investigation suggested that antioxidant status might be modulated through changes in antioxidant enzymatic activity in hypertensive patients. The association of some of these changes with peripheral markers of damage to the central nervous system could indicate that the increased levels of these proteins in hypertension are partly related to oxidative stress.

关 键 词:HYPERTENSION GAMMA-GLUTAMYLTRANSFERASE CATALASE Neuron Specific Enolase S100 Calcium Binding Protein B 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象