Novel Bioelectric Mechanisms and Functional Significance of Peripheral and Central Entrainment by Respiration  被引量:1

Novel Bioelectric Mechanisms and Functional Significance of Peripheral and Central Entrainment by Respiration

在线阅读下载全文

作  者:Ravinder Jerath Connor Beveridge 

机构地区:[1]Charitable Medical Healthcare Foundation, Augusta, GA, USA

出  处:《World Journal of Neuroscience》2018年第4期480-500,共21页神经科学国际期刊(英文)

摘  要:The human organism is a complex biological system with emergent properties that arise from the unified functional interactions among its diverse components. When studying the brain and body in light of modern biological systems approaches, one must analyze them in a holistic manner, putting aside reductionist models in order to understand how certain properties manifest from complex system interactions. The respiratory system is capable of continuously adapting to changes in the internal and external environment, making it one of the most integrated of physiological processes. We propose an additional respiratory process: respiration-derived electrical currents during inspiration that spread throughout the entire body maintaining homeostasis through entraining oscillatory activity, modulating cognitive processes, and modulating the autonomic nervous system. If these currents are indeed created in part from redox reactions occurring on a massive scale, then we assert they are a major aspect of an embodied cognitive framework. We propose that this potentially major source of organism integrity has been overlooked, and its application to medicine could drastically change how we understand human physiology, the autonomic nervous system, and the therapeutic treatment of various clinical disorders.The human organism is a complex biological system with emergent properties that arise from the unified functional interactions among its diverse components. When studying the brain and body in light of modern biological systems approaches, one must analyze them in a holistic manner, putting aside reductionist models in order to understand how certain properties manifest from complex system interactions. The respiratory system is capable of continuously adapting to changes in the internal and external environment, making it one of the most integrated of physiological processes. We propose an additional respiratory process: respiration-derived electrical currents during inspiration that spread throughout the entire body maintaining homeostasis through entraining oscillatory activity, modulating cognitive processes, and modulating the autonomic nervous system. If these currents are indeed created in part from redox reactions occurring on a massive scale, then we assert they are a major aspect of an embodied cognitive framework. We propose that this potentially major source of organism integrity has been overlooked, and its application to medicine could drastically change how we understand human physiology, the autonomic nervous system, and the therapeutic treatment of various clinical disorders.

关 键 词:Bioelectric RESPIRATION EMBODIED COGNITION Oxidation Membrane Potential Neural Oscillation HYPERPOLARIZATION 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象