检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Alimohammad Nazari Sajjad Zia Borujeni
机构地区:[1]Department of Mathematics, Faculty of Science, Arak University, Arak, Iran
出 处:《Advances in Linear Algebra & Matrix Theory》2012年第3期31-37,共7页线性代数与矩阵理论研究进展(英文)
摘 要:In recent years, a number of preconditioners have been applied to solve the linear systems with Gauss-Seidel method (see [1-7,10-12,14-16]). In this paper we use Sl instead of (S + Sm) and compare with M. Morimoto’s precondition [3] and H. Niki’s precondition [5] to obtain better convergence rate. A numerical example is given which shows the preference of our method.In recent years, a number of preconditioners have been applied to solve the linear systems with Gauss-Seidel method (see [1-7,10-12,14-16]). In this paper we use Sl instead of (S + Sm) and compare with M. Morimoto’s precondition [3] and H. Niki’s precondition [5] to obtain better convergence rate. A numerical example is given which shows the preference of our method.
关 键 词:PRECONDITIONING GAUSS-SEIDEL Method Regular SPLITTING Z-MATRIX NONNEGATIVE Matrix
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166