Bell’s Ternary Quadratic Forms and Tunnel’s Congruent Number Criterion Revisited  

Bell’s Ternary Quadratic Forms and Tunnel’s Congruent Number Criterion Revisited

在线阅读下载全文

作  者:Werner Hürlimann 

机构地区:[1]Swiss Mathematical Society, Fribourg, Switzerland

出  处:《Advances in Pure Mathematics》2015年第5期267-277,共11页理论数学进展(英文)

摘  要:Bell’s theorem determines the number of representations of a positive integer in terms of the ternary quadratic forms x2+by2+cz2 with b,c {1,2,4,8}. This number depends only on the number of representations of an integer as a sum of three squares. We present a modern elementary proof of Bell’s theorem that is based on three standard Ramanujan theta function identities and a set of five so-called three-square identities by Hurwitz. We use Bell’s theorem and a slight extension of it to find explicit and finite computable expressions for Tunnel’s congruent number criterion. It is known that this criterion settles the congruent number problem under the weak Birch-Swinnerton-Dyer conjecture. Moreover, we present for the first time an unconditional proof that a square-free number n 3(mod 8) is not congruent.Bell’s theorem determines the number of representations of a positive integer in terms of the ternary quadratic forms x2+by2+cz2 with b,c {1,2,4,8}. This number depends only on the number of representations of an integer as a sum of three squares. We present a modern elementary proof of Bell’s theorem that is based on three standard Ramanujan theta function identities and a set of five so-called three-square identities by Hurwitz. We use Bell’s theorem and a slight extension of it to find explicit and finite computable expressions for Tunnel’s congruent number criterion. It is known that this criterion settles the congruent number problem under the weak Birch-Swinnerton-Dyer conjecture. Moreover, we present for the first time an unconditional proof that a square-free number n 3(mod 8) is not congruent.

关 键 词:Sum of SQUARES TERNARY Quadratic Form THETA Function HURWITZ Three-Squares Formula CONGRUENT Number Weak Birch-Swinnerton-Dyer CONJECTURE 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象