检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Thomas Beatty Timothy Jones
机构地区:[1]Florida Gulf Coast University, Fort Myers, Florida, USA
出 处:《Advances in Pure Mathematics》2017年第4期299-305,共7页理论数学进展(英文)
摘 要:This paper summarizes research intended to develop a pedagogically friendly argument that establishes the fact that (x,ex ) is never a rational point in the plane. A point (x, y)∈R2 is rational if both x and y are rational. Applying a method based on Hurwitz polynomials, the research establishes simple irrationality proofs for nonzero rational powers of e and logarithms of positive rationals (excluding one).This paper summarizes research intended to develop a pedagogically friendly argument that establishes the fact that (x,ex ) is never a rational point in the plane. A point (x, y)∈R2 is rational if both x and y are rational. Applying a method based on Hurwitz polynomials, the research establishes simple irrationality proofs for nonzero rational powers of e and logarithms of positive rationals (excluding one).
关 键 词:RATIONAL Point IRRATIONALITY SUM of Derivatives PRIME DIVISIBILITY HURWITZ Polynomial
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49