Common Properties of Riemann Zeta Function, Bessel Functions and Gauss Function Concerning Their Zeros  被引量:1

Common Properties of Riemann Zeta Function, Bessel Functions and Gauss Function Concerning Their Zeros

在线阅读下载全文

作  者:Alfred Wünsche 

机构地区:[1]Institut für Physik, Humboldt-Universitä t, MPG Nichtklassische Strahlung, Berlin, Germany

出  处:《Advances in Pure Mathematics》2019年第3期281-316,共36页理论数学进展(英文)

摘  要:The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.The behavior of the zeros in finite Taylor series approximations of the Riemann Xi function (to the zeta function), of modified Bessel functions and of the Gaussian (bell) function is investigated and illustrated in the complex domain by pictures. It can be seen how the zeros in finite approximations approach to the genuine zeros in the transition to higher-order approximation and in case of the Gaussian (bell) function that they go with great uniformity to infinity in the complex plane. A limiting transition from the modified Bessel functions to a Gaussian function is discussed and represented in pictures. In an Appendix a new building stone to a full proof of the Riemann hypothesis using the Second mean-value theorem is presented.

关 键 词:RIEMANN Zeta and Xi Function Modified BESSEL Functions Second Mean-Value THEOREM or Gauss-Bonnet THEOREM RIEMANN Hypothesis 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象