Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations  

Comparison of Fixed Point Methods and Krylov Subspace Methods Solving Convection-Diffusion Equations

在线阅读下载全文

作  者:Xijian Wang 

机构地区:[1]School of Mathematics and Computational Science, Wuyi University, Jiangmen, China

出  处:《American Journal of Computational Mathematics》2015年第2期113-126,共14页美国计算数学期刊(英文)

摘  要:The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods.The paper first introduces two-dimensional convection-diffusion equation with boundary value condition, later uses the finite difference method to discretize the equation and analyzes positive definite, diagonally dominant and symmetric properties of the discretization matrix. Finally, the paper uses fixed point methods and Krylov subspace methods to solve the linear system and compare the convergence speed of these two methods.

关 键 词:Finite DIFFERENCE METHOD CONVECTION-DIFFUSION Equation DISCRETIZATION Matrix ITERATIVE METHOD CONVERGENCE Speed 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象