检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Banan Alqanawi Musa Adam Aigo Banan Alqanawi;Musa Adam Aigo(Department of Mathematics, Umm Al-Qura University, Mecca, Saudi Arabia;Department of Mathematics, University College in Qunfudah, Umm Al-Qura University, Mecca, Saudi Arabia)
机构地区:[1]Department of Mathematics, Umm Al-Qura University, Mecca, Saudi Arabia [2]Department of Mathematics, University College in Qunfudah, Umm Al-Qura University, Mecca, Saudi Arabia
出 处:《American Journal of Computational Mathematics》2023年第1期122-135,共14页美国计算数学期刊(英文)
摘 要:The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.The aim of this paper is to give an appropriate numerical method to solve Allen-Cahn equation, with Dirichlet or Neumann boundary condition. The time discretization involves an explicit scheme for the nonlinear part of the operator and an implicit Euler discretization of the linear part. Finite difference schemes are used for the spatial part. This finally leads to the numerical solution of a sparse linear system that can be solved efficiently.
关 键 词:Semi-Implicit Schemes Allen-Cahn Equations Finite Difference Sparse System Jacobi Fixed Point GAUSS-SEIDEL
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117