检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Ilia Zabrodskii Arcady Ponosov
机构地区:[1]Department of Science and Technology, Norwegian University of Life Sciences, Å s, Norway
出 处:《Applied Mathematics》2017年第4期453-475,共23页应用数学(英文)
摘 要:Many advanced mathematical models of biochemical, biophysical and other processes in systems biology can be described by parametrized systems of nonlinear differential equations. Due to complexity of the models, a problem of their simplification has become of great importance. In particular, rather challengeable methods of estimation of parameters in these models may require such simplifications. The paper offers a practical way of constructing approximations of nonlinearly parametrized functions by linearly parametrized ones. As the idea of such approximations goes back to Principal Component Analysis, we call the corresponding transformation Principal Component Transform. We show that this transform possesses the best individual fit property, in the sense that the corresponding approximations preserve most information (in some sense) about the original function. It is also demonstrated how one can estimate the error between the given function and its approximations. In addition, we apply the theory of tensor products of compact operators in Hilbert spaces to justify our method for the case of the products of parametrized functions. Finally, we provide several examples, which are of relevance for systems biology.Many advanced mathematical models of biochemical, biophysical and other processes in systems biology can be described by parametrized systems of nonlinear differential equations. Due to complexity of the models, a problem of their simplification has become of great importance. In particular, rather challengeable methods of estimation of parameters in these models may require such simplifications. The paper offers a practical way of constructing approximations of nonlinearly parametrized functions by linearly parametrized ones. As the idea of such approximations goes back to Principal Component Analysis, we call the corresponding transformation Principal Component Transform. We show that this transform possesses the best individual fit property, in the sense that the corresponding approximations preserve most information (in some sense) about the original function. It is also demonstrated how one can estimate the error between the given function and its approximations. In addition, we apply the theory of tensor products of compact operators in Hilbert spaces to justify our method for the case of the products of parametrized functions. Finally, we provide several examples, which are of relevance for systems biology.
关 键 词:Principal COMPONENT Analysis DISCRETIZATION of FUNCTIONS METAMODELING LATENT Parameters
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40