On Finding Geodesic Equation of Normal Distribution and Gaussian Curvature  

On Finding Geodesic Equation of Normal Distribution and Gaussian Curvature

在线阅读下载全文

作  者:William W. S. Chen 

机构地区:[1]Department of Statistics, The George Washington University, Washington, USA

出  处:《Applied Mathematics》2017年第9期1336-1342,共7页应用数学(英文)

摘  要:In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originated from the normal distribution. While the second algorithm applies the well-known Darboux Theory. These two algorithms draw the same geodesic equation. Finally, we applied Baltzer R.’s finding to compute the Gaussian Curvature.In this paper, we apply two different algorithms to find the geodesic equation of the normal distribution. The first algorithm consists of solving a triply partial differential equation where these equations originated from the normal distribution. While the second algorithm applies the well-known Darboux Theory. These two algorithms draw the same geodesic equation. Finally, we applied Baltzer R.’s finding to compute the Gaussian Curvature.

关 键 词:DARBOUX Theory DIFFERENTIAL Geometry GEODESIC EQUATION PARTIAL DIFFERENTIAL EQUATION NORMAL Distribution 

分 类 号:O1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象