A Connection between Geometrical Spreading and the Adjoint Field in Travel Time Tomography  

A Connection between Geometrical Spreading and the Adjoint Field in Travel Time Tomography

在线阅读下载全文

作  者:William Menke 

机构地区:[1]Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York, USA

出  处:《Applied Mathematics》2020年第2期84-96,共13页应用数学(英文)

摘  要:The goal of tomography is to reconstruct a spatially-varying image function s(x,m), where x is position and m is a finite-length vector of parameters. Many reconstruction methods minimize the total L2 error E ≡ eTe, where individual errors ei quantify misfit between predictions and observations, to quantify goodness of fit. So-called adjoint state methods allow the gradient ∂E/∂mi to be computed extremely efficiently from an adjoint field, facilitating image reconstruction by gradient-descent methods. We examine the structure of the differential equation for the adjoint field under the ray approximation and find that it has the same form as the transport equation, whose solution involves the well-known geometrical spreading function R Consequently, as R is routinely tabulated as part of a ray calculation, no extra work is needed to compute the adjoint field, permitting a rapid calculation of the gradient?∂E/∂mi.The goal of tomography is to reconstruct a spatially-varying image function s(x,m), where x is position and m is a finite-length vector of parameters. Many reconstruction methods minimize the total L2 error E ≡ eTe, where individual errors ei quantify misfit between predictions and observations, to quantify goodness of fit. So-called adjoint state methods allow the gradient ∂E/∂mi to be computed extremely efficiently from an adjoint field, facilitating image reconstruction by gradient-descent methods. We examine the structure of the differential equation for the adjoint field under the ray approximation and find that it has the same form as the transport equation, whose solution involves the well-known geometrical spreading function R Consequently, as R is routinely tabulated as part of a ray calculation, no extra work is needed to compute the adjoint field, permitting a rapid calculation of the gradient?∂E/∂mi.

关 键 词:ADJOINT State METHOD EIKONAL EQUATION GEOMETRICAL SPREADING Gradient-Descent METHOD Transport EQUATION Travel Time Tomography 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象