检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Shuangte Wang[1] Hengguo Yu[1] Chuanjun Dai[1] Min Zhao[1]
出 处:《Applied Mathematics》2020年第5期389-406,共18页应用数学(英文)
摘 要:In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.
关 键 词:HOLLING Type II Functional Response REACTION-DIFFUSION PREDATOR-PREY System Global Stability TURING Instability Hopf Bifurcation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7