Global Asymptotic Stability and Hopf Bifurcation in a Homogeneous Diffusive Predator-Prey System with Holling Type II Functional Response  被引量:3

Global Asymptotic Stability and Hopf Bifurcation in a Homogeneous Diffusive Predator-Prey System with Holling Type II Functional Response

在线阅读下载全文

作  者:Shuangte Wang[1] Hengguo Yu[1] Chuanjun Dai[1] Min Zhao[1] 

出  处:《Applied Mathematics》2020年第5期389-406,共18页应用数学(英文)

摘  要:In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.In this paper, we considered a homogeneous reaction-diffusion predator-prey system with Holling type II functional response subject to Neumann boundary conditions. Some new sufficient conditions were analytically established to ensure that this system has globally asymptotically stable equilibria and Hopf bifurcation surrounding interior equilibrium. In the analysis of Hopf bifurcation, based on the phenomenon of Turing instability and well-done conditions, the system undergoes a Hopf bifurcation and an example incorporating with numerical simulations to support the existence of Hopf bifurcation is presented. We also derived a useful algorithm for determining direction of Hopf bifurcation and stability of bifurcating periodic solutions correspond to j ≠0 and j = 0, respectively. Finally, all these theoretical results are expected to be useful in the future study of dynamical complexity of ecological environment.

关 键 词:HOLLING Type II Functional Response REACTION-DIFFUSION PREDATOR-PREY System Global Stability TURING Instability Hopf Bifurcation 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象