Group Method of Data Handling for Modeling Magnetorheological Dampers  

Group Method of Data Handling for Modeling Magnetorheological Dampers

在线阅读下载全文

作  者:Khaled Assaleh Tamer Shanableh Yasmin Abu Kheil 

机构地区:[1]Department of Computer Science and Engineering, American University of Sharjah, Sharjah, United Arab Emirates [2]Department of Electrical Engineering, American University of Sharjah, Sharjah, United Arab Emirates [3]Mechatronics Graduate Program, American University of Sharjah, Sharjah, United Arab Emirates

出  处:《Intelligent Control and Automation》2013年第1期70-79,共10页智能控制与自动化(英文)

摘  要:This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%.This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%.

关 键 词:System IDENTIFICATION Magneto-Rheological DAMPERS GROUP Method of Data HANDLING POLYNOMIAL CLASSIFIER 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象