检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Mingxia Liu Kexin Zhang Mingxia Liu;Kexin Zhang(College of Railway Transportation, Hunan University of Technology, Zhuzhou, China)
机构地区:[1]College of Railway Transportation, Hunan University of Technology, Zhuzhou, China
出 处:《Intelligent Control and Automation》2025年第1期19-33,共15页智能控制与自动化(英文)
摘 要:Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.Rail corrugation, as a prevalent type of rail damage in heavy railways, induces diseases in the track structure. In order to ensure the safe operation of trains, an improved whale optimization algorithm is proposed to optimize the rail corrugation evolution trend prediction model of the least squares support vector machine (IPCA-ELWOA-LSSVM). The elite reverse learning combined with the Lévy flight strategy is introduced to improve the whale optimization algorithm. The improved WOA (ELWOA) algorithm is used to continuously optimize the kernel parameter σ and the normalization parameter γ in the LSSVM model. Finally, the improved prediction model is validated using data from a domestic heavy-duty railway experimental line database and compared with the prediction model before optimization and the other commonly used models. The experimental results show that the ELWOA-LSSVM prediction model has the highest accuracy, which proves that the proposed method has high accuracy in predicting the rail corrugation evolution trend.
关 键 词:Rail Corrugation PCA Evolution Trend Prediction WOA LSSVM
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.63