检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhenyu Zhao Ou Xie Zehong Meng Lei You
机构地区:[1]College of Science, Guangdong Ocean University, Zhanjiang, China [2]School of Mathematics and Statistics, Zhejiang University of Finance and Economics, Hangzhou, China
出 处:《Journal of Applied Mathematics and Physics》2014年第2期10-17,共8页应用数学与应用物理(英文)
摘 要:In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error estimates are obtained with a posteriori choice rule to find the regularization parameter. The smoothness parameter and the a priori bound of exact solution are not needed for the choice rule. Numerical tests show that the proposed method is effective and stable.In this paper, we consider the problem for determining an unknown source in the heat equation. The Tikhonov regularization method in Hilbert scales is presented to deal with ill-posedness of the problem and error estimates are obtained with a posteriori choice rule to find the regularization parameter. The smoothness parameter and the a priori bound of exact solution are not needed for the choice rule. Numerical tests show that the proposed method is effective and stable.
关 键 词:ILL-POSED Problem UNKNOWN SOURCE Heat Equation Regularization METHOD DISCREPANCY Principle in HILBERT Scales
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222