检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Soumaila Dembele Gane Samb Lo
机构地区:[1]LSTA, Université Pierre et Marie Curie, Paris, France [2]LERSTAD, Université Gaston Berger de Saint-Louis, Saint-Louis, Sénégal [3]Université des Sciences de Gestion de Bamako, Bamako, Mali
出 处:《Journal of Data Analysis and Information Processing》2015年第4期112-127,共16页数据分析和信息处理(英文)
摘 要:The fundamental problem of similarity studies, in the frame of data-mining, is to examine and detect similar items in articles, papers, and books with huge sizes. In this paper, we are interested in the probabilistic, and the statistical and the algorithmic aspects in studies of texts. We will be using the approach of k-shinglings, a k-shingling being defined as a sequence of k consecutive characters that are extracted from a text (k ≥ 1). The main stake in this field is to find accurate and quick algorithms to compute the similarity in short times. This will be achieved in using approximation methods. The first approximation method is statistical and, is based on the theorem of Glivenko-Cantelli. The second is the banding technique. And the third concerns a modification of the algorithm proposed by Rajaraman et al. ([1]), denoted here as (RUM). The Jaccard index is the one being used in this paper. We finally illustrate these results of the paper on the four Gospels. The results are very conclusive.The fundamental problem of similarity studies, in the frame of data-mining, is to examine and detect similar items in articles, papers, and books with huge sizes. In this paper, we are interested in the probabilistic, and the statistical and the algorithmic aspects in studies of texts. We will be using the approach of k-shinglings, a k-shingling being defined as a sequence of k consecutive characters that are extracted from a text (k ≥ 1). The main stake in this field is to find accurate and quick algorithms to compute the similarity in short times. This will be achieved in using approximation methods. The first approximation method is statistical and, is based on the theorem of Glivenko-Cantelli. The second is the banding technique. And the third concerns a modification of the algorithm proposed by Rajaraman et al. ([1]), denoted here as (RUM). The Jaccard index is the one being used in this paper. We finally illustrate these results of the paper on the four Gospels. The results are very conclusive.
关 键 词:SIMILARITY Web MINING Jaccard SIMILARITY RU Algorithm Minhashing Data MINING Shingling Bible’s GOSPELS Glivenko-Cantelli EXPECTED SIMILARITY STATISTICAL Estimation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145