Radiological Concentration Distribution of <sup>131</sup>I, <sup>132</sup>I, <sup>133</sup>I, <sup>134</sup>I, and <sup>135</sup>I Due to a Hypothetical Accident of TRIGA Mark-II Research Reactor  

Radiological Concentration Distribution of <sup>131</sup>I, <sup>132</sup>I, <sup>133</sup>I, <sup>134</sup>I, and <sup>135</sup>I Due to a Hypothetical Accident of TRIGA Mark-II Research Reactor

在线阅读下载全文

作  者:M. A. Malek K. J. A. Chisty M. M. Rahman 

机构地区:[1]Department of Electrical and Electronic Engineering, European University of Bangladesh, Dhaka, Bangladesh [2]Department of Electrical and Electronic Engineering, Green University of Bangladesh, Dhaka, Bangladesh [3]Energy Institute, Atomic Energy Research Establishment, Dhaka, Bangladesh

出  处:《Journal of Modern Physics》2012年第10期1572-1585,共14页现代物理(英文)

摘  要:The present work gives a methodology for assessing radiological concentration of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh. The concentrations were estimated through different pathways like ingestion of vegetation, milk, and meat from air and ground deposition. The maximum air concentrations for all 16 directions were found at 110 m distance from the core of the reactor and it was found to be highest in the southern (S) direction. The maximum ground concentration occurred immediately just after the accident in different directions. In all pathways, the most concentration was found to be in S-direction. The concentrations in vegetation of 131I, 133I, 135I were significant, while no concentrations of 132I and 134I were observed. The concentration in vegetation for 131I was found to be highest than all other isotopes of iodine. The concentrations of 133I were found to be higher and concentrations of 134I were observed to be lower in both milk and meat compared to other radio isotopes of iodine. In the case of a radiological accident, the results of the present study will be a valuable guide for adopting radiological safety measures for radiation protection against the ingestion of vegetables, milk and meat from around the research reactor at AERE, Savar, Bangladesh.The present work gives a methodology for assessing radiological concentration of 131I, 132I, 133I, 134I, and 135I due to a hypothetical accident of TRIGA Mark-II research Reactor at AERE, Savar, Bangladesh. The concentrations were estimated through different pathways like ingestion of vegetation, milk, and meat from air and ground deposition. The maximum air concentrations for all 16 directions were found at 110 m distance from the core of the reactor and it was found to be highest in the southern (S) direction. The maximum ground concentration occurred immediately just after the accident in different directions. In all pathways, the most concentration was found to be in S-direction. The concentrations in vegetation of 131I, 133I, 135I were significant, while no concentrations of 132I and 134I were observed. The concentration in vegetation for 131I was found to be highest than all other isotopes of iodine. The concentrations of 133I were found to be higher and concentrations of 134I were observed to be lower in both milk and meat compared to other radio isotopes of iodine. In the case of a radiological accident, the results of the present study will be a valuable guide for adopting radiological safety measures for radiation protection against the ingestion of vegetables, milk and meat from around the research reactor at AERE, Savar, Bangladesh.

关 键 词:Concentration Effective Stack Height Pathway S-Direction TRIGA Mark-II 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象