检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Gabriel Y. H. Avossevou Jean V. Hounguevou Daniel Sabi Takou
出 处:《Journal of Modern Physics》2013年第11期1476-1485,共10页现代物理(英文)
摘 要:It is well known that the representations over an arbitrary configuration space related to a physical system of the Heisenberg algebra allow to distinguish the simply and non simply-connected manifolds [arXiv:quant-ph/9908.014, arXiv:hep-th/0608.023]. In the light of this classification, the dynamics of a quantum particle on the line is studied in the framework of the conventional quantization scheme as well as that of the enhanced quantization recently introduced by J. R. Klauder [arXiv:quant-ph/1204.2870]. The quantum action functional restricted to the phase space coherent states is obtained from the enhanced quantization procedure, showing the coexistence of classical and quantum theories, a fundamental advantage offered by this new approach. The example of the one dimensional harmonic oscillator is given. Next, the spectrum of a free particle on the two-sphere is recognized from the covariant diffeomorphic representations of the momentum operator in the configuration space. Our results based on simple models also point out the already-known link between interaction and topology at quantum level.It is well known that the representations over an arbitrary configuration space related to a physical system of the Heisenberg algebra allow to distinguish the simply and non simply-connected manifolds [arXiv:quant-ph/9908.014, arXiv:hep-th/0608.023]. In the light of this classification, the dynamics of a quantum particle on the line is studied in the framework of the conventional quantization scheme as well as that of the enhanced quantization recently introduced by J. R. Klauder [arXiv:quant-ph/1204.2870]. The quantum action functional restricted to the phase space coherent states is obtained from the enhanced quantization procedure, showing the coexistence of classical and quantum theories, a fundamental advantage offered by this new approach. The example of the one dimensional harmonic oscillator is given. Next, the spectrum of a free particle on the two-sphere is recognized from the covariant diffeomorphic representations of the momentum operator in the configuration space. Our results based on simple models also point out the already-known link between interaction and topology at quantum level.
关 键 词:HEISENBERG ALGEBRA CONVENTIONAL QUANTIZATION ENHANCED QUANTIZATION Non Simply-Connected MANIFOLDS Interaction Topology
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.15.52