QUANTIZATION

作品数:374被引量:351H指数:7
导出分析报告
相关作者:王青张荣陆晓方晶陈颖更多>>
相关机构:江南大学清华大学中国科学技术大学中国科学院更多>>
相关期刊:更多>>
相关基金:国家自然科学基金国家重点基础研究发展计划中国博士后科学基金国家高技术研究发展计划更多>>
-

检索结果分析

结果分析中...
条 记 录,以下是1-10
视图:
排序:
An Uncertainty Quantization-Based Method for Anti-UAV Detection in Infrared Images
《Computers, Materials & Continua》2025年第4期1439-1458,共20页Can Wu Wenyi Tang Yunbo Rao Yinjie Chen Hui Ding Shuzhen Zhu Yuanyuan Wang 
supported by the Science and Technology Project of Sichuan(Grant No.2024ZHCG0170);the National Key Research and Development Program of China,“Key Technologies for Instrumentation and Control System Program Security Based on Blockchain”(Project No.2024YFB3311000);States Key Laboratory of Air Traffic Management System(Grant No.SKLATM202202);the Chengdu Science and Technology Project(Grant No.2022-YF05-00068-SN).
Infrared unmanned aerial vehicle(UAV)target detection presents significant challenges due to the inter-play between small targets and complex backgrounds.Traditional methods,while effective in controlled environments,...
关键词:Object segmentation uncertainty quantification bayesian convolutional neural network 
Distribution-flexible subset quantization for post-quantizing super-resolution networks
《Science China(Information Sciences)》2025年第3期159-176,共18页Yunshan ZHONG Mingbao LIN Jingjing XIE Yuxin ZHANG Fei CHAO Rongrong JI 
supported by National Key R&D Program of China(Grant No.2022ZD0118202);National Science Fund for Distinguished Young Scholars(Grant No.62025603);National Natural Science Foundation of China(Grant Nos.U21B2037,U22B2051,62176222,62176223,62176226,62072386,62072387,62072389,62002305,62272401);Natural Science Foundation of Fujian Province of China(Grant Nos.2021J01002,2022J06001)。
This paper introduces distribution-flexible subset quantization(DFSQ),a post-training quantization method for super-resolution networks.Our motivation for developing DFSQ is based on the distinctive activation distrib...
关键词:SUPER-RESOLUTION post-training quantization distribution-fexible subset quantization neural network 
Optimizing BERT for Bengali Emotion Classification: Evaluating Knowledge Distillation, Pruning, and Quantization
《Computer Modeling in Engineering & Sciences》2025年第2期1637-1666,共30页Md Hasibur Rahman Mohammed Arif Uddin Zinnat Fowzia Ria Rashedur M.Rahman 
The rapid growth of digital data necessitates advanced natural language processing(NLP)models like BERT(Bidi-rectional Encoder Representations from Transformers),known for its superior performance in text classificati...
关键词:Bengali NLP black-box distillation emotion classification model compression post-training quantization unstructured pruning 
Quantization of Fractional Singular Lagrangian Systems with Second-Order Derivatives Using Path Integral Method
《Journal of Applied Mathematics and Physics》2025年第2期567-574,共8页Eyad Hasan Hasan Osama Abdalla Abu-Haija 
We examined the fractional second-order singular Lagrangian systems. We wrote the action principal function and equations of motion as fractional total differential equations. Also, we constructed the set of Hamilton-...
关键词:Fractional Path Integral Fractional Singular Lagrangians Fractional Calculus 
Optimizing Fine-Tuning in Quantized Language Models:An In-Depth Analysis of Key Variables
《Computers, Materials & Continua》2025年第1期307-325,共19页Ao Shen Zhiquan Lai Dongsheng Li Xiaoyu Hu 
supported by the National Key R&D Program of China(No.2021YFB0301200);National Natural Science Foundation of China(No.62025208).
Large-scale Language Models(LLMs)have achieved significant breakthroughs in Natural Language Processing(NLP),driven by the pre-training and fine-tuning paradigm.While this approach allows models to specialize in speci...
关键词:Large-scale Language Model Parameter-Efficient Fine-Tuning parameter quantization key variable trainable parameters experimental analysis 
Rate distortion optimization for adaptive gradient quantization in federated learning
《Digital Communications and Networks》2024年第6期1813-1825,共13页Guojun Chen Kaixuan Xie Wenqiang Luo Yinfei Xu Lun Xin Tiecheng Song Jing Hu 
supported in part by the Key Research and Development Program of Jiangsu Province(Grant No.BE2020084-2);in part by the National Key Research and Development Program of China(Grant No.2020YFB1600104);in part by the Key Research and Development Special Project of school and local cooperation in Lvliang(Grant No.2023XDHZ18);in part by Southeast University-China Mobile Research Institute Joint Innovation Center;in part by the National Natural Science Foundation of China(Grant No.62371119);in part by the Key Research and Development Program of Jiangsu Province(Grant No.BE2022059-3);in part by the Zhi Shan Young Scholar Program of Southeast University。
Federated Learning(FL)is an emerging machine learning framework designed to preserve privacy.However,the continuous updating of model parameters over uplink channels with limited throughput leads to a huge communicati...
关键词:Federated learning Communication efficiency Adaptive quantization Rate distortion 
Real-Time Ranging of Vehicles and Pedestrians for Mobile Application on Smartphones
《Journal of Shanghai Jiaotong university(Science)》2024年第6期1081-1090,共10页ZHOU Su ZHONG Zebin 
the RoboCar Project for Internationalization of RTI Projects within the Frame of the Austrian Research Promotion Agency(No.861000)。
The vehicles and pedestrians ranging is one of the basic functions of advanced driving assistance system.However,most of the ranging systems can only work on workstations with high computing power.To solve this proble...
关键词:advanced driving assistance system computer vision int8 quantization visual ranging smartphone application 
Branch Convolution Quantization for Object Detection
《Machine Intelligence Research》2024年第6期1192-1200,共9页Miao Li Feng Zhang Cuiting Zhang 
Quantization is one of the research topics on lightweight and edge-deployed convolutional neural networks(CNNs).Usu-ally,the activation and weight bit-widths between layers are inconsistent to ensure good performance ...
关键词:Branch convolution quantization thermometer coding extremely low-bit quantization hardware deployment object detection 
Adaptive Model Compression for Steel Plate Surface Defect Detection:An Expert Knowledge and Working Condition-Based Approach
《Tsinghua Science and Technology》2024年第6期1851-1871,共21页Maojie Sun Fang Dong Zhaowu Huang Junzhou Luo 
supported by the National Key R&D Program of China(No.2018AAA0100500);the National Natural Science Foundation of China(Nos.62232004 and 61632008);the Jiangsu Provincial Key Laboratory of Network and Information Security(No.BM2003201);the Key Laboratory of Computer Network and Information Integration of Ministry of Education of China(No.93K-9);the Collaborative Innovation Center of Novel Software Technology and Industrialization;the Big Data Computing Center of Southeast University in China for providing the experiment environment and computing facility.
The steel plate is one of the main products in steel industries,and its surface quality directly affects the final product performance.How to detect surface defects of steel plates in real time during the production p...
关键词:steel surface defect detection inference acceleration model compression expert knowledge PRUNING QUANTIZATION 
Network-Assisted Full-Duplex Cell-Free mmWave Massive MIMO Systems with DAC Quantization and Fronthaul Compression
《China Communications》2024年第11期75-87,共13页Li Jiamin Fan Qingrui Zhang Yu Zhu Pengcheng Wang Dongming Wu Hao You Xiaohu 
supported in part by the National Natural Science Foundation of China(NSFC)under Grants 61971127,61871465,61871122;in part by the National Key Research and Development Program under Grant 2020YFB1806600;in part by the open research fund of National Mobile Communications Research Laboratory,Southeast University under Grant 2022D11。
In this paper,we investigate networkassisted full-duplex(NAFD)cell-free millimeter-wave(mmWave)massive multiple-input multiple-output(MIMO)systems with digital-to-analog converter(DAC)quantization and fronthaul compre...
关键词:cell-free massive MIMO DAC quantization millimeter-wave network-assisted full-duplex 
检索报告 对象比较 聚类工具 使用帮助 返回顶部