Quantifying Biofilm Formation of <i>Sinorhizobium meliloti</i>Bacterial Strains in Microfluidic Platforms by Measuring the Diffusion Coefficient of Polystyrene Beads  

Quantifying Biofilm Formation of <i>Sinorhizobium meliloti</i>Bacterial Strains in Microfluidic Platforms by Measuring the Diffusion Coefficient of Polystyrene Beads

在线阅读下载全文

作  者:Chen Cheng Yijun Dong Matthew Dorian Farhan Kamili Effrosyni Seitaridou 

机构地区:[1]Division of Natural Science and Mathematics, Oxford College of Emory University, Oxford, GA, United States

出  处:《Open Journal of Biophysics》2017年第3期157-173,共17页生物物理学期刊(英文)

摘  要:Though the majority of bacteria can form structured communities known as biofilms, mutations can cause bacterial strains to vary in their ability to form a biofilm. In this study, the apparent diffusion coefficient of polystyrene microspheres 0.29 μm in diameter, which were executing Brownian motion inside bacterial colonies, was used as a quantitative parameter of the ability of a strain to form a biofilm and of the biofilm development. The study was performed using five Sinorhizobium meliloti strains, the biofilm-forming strains Rm8530 expR+, Rm8530 exoY, and Rm9034 expG, and the non-biofilm forming strains Rm1021 and Rm9030-2 expA1. The green fluorescent beads were placed with each strain in a separate channel of a microfluidic device. Thus, as the bacterial colonies grew under identical conditions over a 4-day period, the motion of the fluorescent microspheres was recorded and the diffusion coefficients were measured every 24 hours via particle tracking algorithms. It was found that each strain displayed a unique pattern of change in diffusion coefficient over time. Also, for a given biofilm-forming strain, there was a clear correlation between the value of the diffusion coefficient and the appearance and motility of the bacterial community. Thus, the diffusion coefficient can be used to identify different S. meliloti strains, and for the biofilm-forming strains, it is also a quantitative indicator of the stage of biofilm development.Though the majority of bacteria can form structured communities known as biofilms, mutations can cause bacterial strains to vary in their ability to form a biofilm. In this study, the apparent diffusion coefficient of polystyrene microspheres 0.29 μm in diameter, which were executing Brownian motion inside bacterial colonies, was used as a quantitative parameter of the ability of a strain to form a biofilm and of the biofilm development. The study was performed using five Sinorhizobium meliloti strains, the biofilm-forming strains Rm8530 expR+, Rm8530 exoY, and Rm9034 expG, and the non-biofilm forming strains Rm1021 and Rm9030-2 expA1. The green fluorescent beads were placed with each strain in a separate channel of a microfluidic device. Thus, as the bacterial colonies grew under identical conditions over a 4-day period, the motion of the fluorescent microspheres was recorded and the diffusion coefficients were measured every 24 hours via particle tracking algorithms. It was found that each strain displayed a unique pattern of change in diffusion coefficient over time. Also, for a given biofilm-forming strain, there was a clear correlation between the value of the diffusion coefficient and the appearance and motility of the bacterial community. Thus, the diffusion coefficient can be used to identify different S. meliloti strains, and for the biofilm-forming strains, it is also a quantitative indicator of the stage of biofilm development.

关 键 词:BIOFILM Diffusion COEFFICIENT Particle Tracking Microfluidics SINORHIZOBIUM MELILOTI 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象