Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology  被引量:2

Approaching Complexity: Hyperthermia Dose and Its Possible Measurement in Oncology

在线阅读下载全文

作  者:Oliver Szasz Andras Szasz Oliver Szasz;Andras Szasz(Biotechnics Department, St. Istvan University, Budaörs, Hungary)

机构地区:[1]Biotechnics Department, St. Istvan University, Budaö rs, Hungary

出  处:《Open Journal of Biophysics》2021年第1期68-132,共65页生物物理学期刊(英文)

摘  要:A heuristic stochastic solution of the Pennes equation is developed in this paper by applying the self-organizing, self-similar behaviour of living structures. The stochastic solution has a probability distribution that fits well with the dynamic changes in the living objects concerned and eliminates the problem of the deterministic behaviour of the Pennes approach. The solution employs the Weibull two-parametric distribution which offers satisfactory delivery of the rate of temperature change by time. Applying the method to malignant tumours obtains certain benefits, increasing the efficacy of the distortion of the cancerous cells and avoiding doing harm to the healthy cells. Due to the robust heterogeneity of these living systems, we used thermal and bioelectromagnetic effects to distinguish the malignant defects, selecting them from the healthy cells. On a selective basis, we propose an optimal protocol using the provided energy optimally such that molecular changes destroy the malignant cells without a noticeable effect on their healthy counterparts.A heuristic stochastic solution of the Pennes equation is developed in this paper by applying the self-organizing, self-similar behaviour of living structures. The stochastic solution has a probability distribution that fits well with the dynamic changes in the living objects concerned and eliminates the problem of the deterministic behaviour of the Pennes approach. The solution employs the Weibull two-parametric distribution which offers satisfactory delivery of the rate of temperature change by time. Applying the method to malignant tumours obtains certain benefits, increasing the efficacy of the distortion of the cancerous cells and avoiding doing harm to the healthy cells. Due to the robust heterogeneity of these living systems, we used thermal and bioelectromagnetic effects to distinguish the malignant defects, selecting them from the healthy cells. On a selective basis, we propose an optimal protocol using the provided energy optimally such that molecular changes destroy the malignant cells without a noticeable effect on their healthy counterparts.

关 键 词:SELF-ORGANIZING SELF-SIMILARITY Avrami-Function Weibull-Distribution Temperature Specific Absorption Rate (SAR) 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象