Phytochemicals of Aloe barbadensis miller as Potential Inhibitors of Uropathogenic Escherichia coli for Urinary Tract Infection Therapy: An in Silico Approach  

Phytochemicals of Aloe barbadensis miller as Potential Inhibitors of Uropathogenic Escherichia coli for Urinary Tract Infection Therapy: An in Silico Approach

在线阅读下载全文

作  者:Mikidadi Salehe Gurisha Pulapa Venkata Kanaka Rao Laxmikanth Cherupally Mikidadi Salehe Gurisha;Pulapa Venkata Kanaka Rao;Laxmikanth Cherupally(Department of Physics, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania)

机构地区:[1]Department of Physics, College of Natural and Mathematical Sciences, University of Dodoma, Dodoma, Tanzania

出  处:《Open Journal of Biophysics》2024年第2期99-120,共22页生物物理学期刊(英文)

摘  要:Urinary tract infections (UTIs) are common infections caused by normal skin or rectum bacteria that get into the urethra and infect the urinary tract. Although the infection can affect various parts of the tract, bladder infections are the most prevalent kind. Uropathogenic Escherichia Coli (UPEC) is the most common pathogen associated with UTI development. Therefore, inhibiting the UPEC protein target (PDB ID: 8BVD) appears to be a promising therapeutic strategy. Therefore, in this study, molecular docking and dynamics were conducted to examine the antibacterial activity of Aloe barbadensis miller against UPEC bacteria. The Aloe barbadensis miller natural compounds licochalcone A, palmidin B and palmidin C were downloaded from PubChem with amoxicillin, which was used as a control drug and studied against the target molecule. The potential parameters examined were the docking scores, absorption, distribution, metabolism, excretion, toxicity (ADMET), bioavailability, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bonding, radius of gyration, and potential energy of the system. Docking scores showed that all ligands demonstrated an admirable candidature as an inhibitor to 8BVD molecule, and the score hierarchy is licochalcone A (-6.4 kcal/mol), palmidin C (-6.1 kcal/mol), palmidin B (-6.0 kcal/mol), and amoxicillin (-5.9 kcal/mol). All ligands appeared to have good drug-like properties and oral bioavailability. Molecular dynamic studies showed that all ligands exhibited an excellent nominee as inhibitors in their vicinity at 20 ns. However, there is a relatively high fluctuation of palmidin B compared with other compounds, which seems to be more stable. This work suggests that the selected phytoconstituents could be used as inhibitors of the 8BVD protein in the fight against UTIs. However, further investigation on the clinical and experimental validation of UTI treatment’s specific mechanisms and effects is still welcomed.Urinary tract infections (UTIs) are common infections caused by normal skin or rectum bacteria that get into the urethra and infect the urinary tract. Although the infection can affect various parts of the tract, bladder infections are the most prevalent kind. Uropathogenic Escherichia Coli (UPEC) is the most common pathogen associated with UTI development. Therefore, inhibiting the UPEC protein target (PDB ID: 8BVD) appears to be a promising therapeutic strategy. Therefore, in this study, molecular docking and dynamics were conducted to examine the antibacterial activity of Aloe barbadensis miller against UPEC bacteria. The Aloe barbadensis miller natural compounds licochalcone A, palmidin B and palmidin C were downloaded from PubChem with amoxicillin, which was used as a control drug and studied against the target molecule. The potential parameters examined were the docking scores, absorption, distribution, metabolism, excretion, toxicity (ADMET), bioavailability, root mean square deviation (RMSD), root mean square fluctuation (RMSF), hydrogen bonding, radius of gyration, and potential energy of the system. Docking scores showed that all ligands demonstrated an admirable candidature as an inhibitor to 8BVD molecule, and the score hierarchy is licochalcone A (-6.4 kcal/mol), palmidin C (-6.1 kcal/mol), palmidin B (-6.0 kcal/mol), and amoxicillin (-5.9 kcal/mol). All ligands appeared to have good drug-like properties and oral bioavailability. Molecular dynamic studies showed that all ligands exhibited an excellent nominee as inhibitors in their vicinity at 20 ns. However, there is a relatively high fluctuation of palmidin B compared with other compounds, which seems to be more stable. This work suggests that the selected phytoconstituents could be used as inhibitors of the 8BVD protein in the fight against UTIs. However, further investigation on the clinical and experimental validation of UTI treatment’s specific mechanisms and effects is still welcomed.

关 键 词:Uropathogenic Escherichia Coli PHYTOCHEMICALS Molecular Docking LIGAND Hydrogen Bond 

分 类 号:R69[医药卫生—泌尿科学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象