检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yasutaka Hayamizu Toru Hyakutake Koji Matsuura Shinichiro Yanase Shinichi Morita Shigeru Ohtsuka Takeshi Gonda
机构地区:[1]Department of Mechanical Engineering, Yonago National College of Technology, Tottori, Japan [2]Graduate School of Engineering, Yokohama National University, Yokohama, Japan [3]Graduate School of Natural Science and Technology, Okayama University, Okayama, Japan [4]Research Core for Interdisciplinary Sciences, Okayama University, Okayama, Japan
出 处:《Open Journal of Fluid Dynamics》2013年第2期9-13,共5页流体动力学(英文)
摘 要:Infertility is often cited as one of the causes of a declining birthrate, which has become a serious social problem in recent years. Processes by which motile sperm can be safely and easily sorted are therefore important for infertility treatment. Therefore, as a new sorting method, microfluidic sperm sorter using the microfluidic system has been developed. To improve more separation efficiency of this device, it is necessary to know the behaviors of motile sperm in the microchannel where the sperm undergo shear flow. The previous study implied the necessity of the modeling of motile sperm in the shear flow. In the present study, therefore, we experimentally investigated the behavior of the motile sperm in the Taylor-Couette flow using PTV (Particle Tracking Velocimetry) method. The experimental results showed that the ascent of the shear stress led to the increase in the sperm velocity, and the direction of the sperm velocity was opposite to that of the flow.Infertility is often cited as one of the causes of a declining birthrate, which has become a serious social problem in recent years. Processes by which motile sperm can be safely and easily sorted are therefore important for infertility treatment. Therefore, as a new sorting method, microfluidic sperm sorter using the microfluidic system has been developed. To improve more separation efficiency of this device, it is necessary to know the behaviors of motile sperm in the microchannel where the sperm undergo shear flow. The previous study implied the necessity of the modeling of motile sperm in the shear flow. In the present study, therefore, we experimentally investigated the behavior of the motile sperm in the Taylor-Couette flow using PTV (Particle Tracking Velocimetry) method. The experimental results showed that the ascent of the shear stress led to the increase in the sperm velocity, and the direction of the sperm velocity was opposite to that of the flow.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38