Progressive Randomization of a Deck of Playing Cards: Experimental Tests and Statistical Analysis of the Riffle Shuffle  被引量:1

Progressive Randomization of a Deck of Playing Cards: Experimental Tests and Statistical Analysis of the Riffle Shuffle

在线阅读下载全文

作  者:M. P. Silverman 

机构地区:[1]Department of Physics, Trinity College, Hartford, CT, USA

出  处:《Open Journal of Statistics》2019年第2期268-298,共31页统计学期刊(英文)

摘  要:The question of how many shuffles are required to randomize an initially ordered deck of cards is a problem that has fascinated mathematicians, scientists, and the general public. The two principal theoretical approaches to the problem, which differed in how each defined randomness, has led to statistically different threshold numbers of shuffles. This paper reports a comprehensive experimental analysis of the card randomization problem for the purposes of determining 1) which of the two theoretical approaches made the more accurate prediction, 2) whether different statistical tests yield different threshold numbers of randomizing shuffles, and 3) whether manual or mechanical shuffling randomizes a deck more effectively for a given number of shuffles. Permutations of 52-card decks, each subjected to sets of 19 successive riffle shuffles executed manually and by an auto-shuffling device were recorded sequentially and analyzed in respect to 1) the theory of runs, 2) rank ordering, 3) serial correlation, 4) theory of rising sequences, and 5) entropy and information theory. Among the outcomes, it was found that: 1) different statistical tests were sensitive to different patterns indicative of residual order;2) as a consequence, the threshold number of randomizing shuffles could vary widely among tests;3) in general, manual shuffling randomized a deck better than mechanical shuffling for a given number of shuffles;and 4) the mean number of rising sequences as a function of number of manual shuffles matched very closely the theoretical predictions based on the Gilbert-Shannon-Reed (GSR) model of riffle shuffles, whereas mechanical shuffling resulted in significantly fewer rising sequences than predicted.The question of how many shuffles are required to randomize an initially ordered deck of cards is a problem that has fascinated mathematicians, scientists, and the general public. The two principal theoretical approaches to the problem, which differed in how each defined randomness, has led to statistically different threshold numbers of shuffles. This paper reports a comprehensive experimental analysis of the card randomization problem for the purposes of determining 1) which of the two theoretical approaches made the more accurate prediction, 2) whether different statistical tests yield different threshold numbers of randomizing shuffles, and 3) whether manual or mechanical shuffling randomizes a deck more effectively for a given number of shuffles. Permutations of 52-card decks, each subjected to sets of 19 successive riffle shuffles executed manually and by an auto-shuffling device were recorded sequentially and analyzed in respect to 1) the theory of runs, 2) rank ordering, 3) serial correlation, 4) theory of rising sequences, and 5) entropy and information theory. Among the outcomes, it was found that: 1) different statistical tests were sensitive to different patterns indicative of residual order;2) as a consequence, the threshold number of randomizing shuffles could vary widely among tests;3) in general, manual shuffling randomized a deck better than mechanical shuffling for a given number of shuffles;and 4) the mean number of rising sequences as a function of number of manual shuffles matched very closely the theoretical predictions based on the Gilbert-Shannon-Reed (GSR) model of riffle shuffles, whereas mechanical shuffling resulted in significantly fewer rising sequences than predicted.

关 键 词:RANDOMIZATION of CARDS Number of RIFFLE Shuffles Rising Sequences GSR Model Entropy and Information 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象