Controlling the Bandgaps of One-Dimensional TiO2/SiO2, TiO2/SnO2, and SiO2/SnO2 Photonic Crystals Using the Transfer Matrix Method  

Controlling the Bandgaps of One-Dimensional TiO2/SiO2, TiO2/SnO2, and SiO2/SnO2 Photonic Crystals Using the Transfer Matrix Method

在线阅读下载全文

作  者:Fatimah Alamrani Edreese Alsharaeh Fatimah Alamrani;Edreese Alsharaeh(College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia)

机构地区:[1]College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia

出  处:《Optics and Photonics Journal》2022年第7期171-189,共19页光学与光子学期刊(英文)

摘  要:One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has not been a comparative study of the three different 1D PhC structures to compare the influence of layer thickness, number, and refractive index on the ability of the PhCs to control light transmission. Herein, we use the transfer matrix method (TMM) to theoretically examine the transmission of 1D PhCs composed of layers of TiO<sub>2</sub>/SiO<sub>2</sub>, TiO<sub>2</sub>/SnO<sub>2</sub>, SiO<sub>2</sub>/SnO<sub>2</sub>, and combinations of the three with various top and bottom layer thicknesses to cover a substantial region of the electromagnetic spectrum (UV to NIR). With increasing layer numbers for TiO<sub>2</sub>/SiO<sub>2</sub> and SiO<sub>2</sub>/SnO<sub>2</sub>, the edges became sharper and wider and the photonic bandgap width increased. Moreover, we demonstrated that PhCs with significantly thick TiO<sub>2</sub>/SiO<sub>2</sub> layers had a high transmittance for a wide bandgap, allowing for wide-band optical filter applications. These different PhC architectures could enable a variety of applications, depending on the properties needed.One-dimensional photonic crystals (1D PhCs) have a unique ability to control the propagation of light waves, however certain classes of 1D oxides remain relatively unexplored for use as PhCs. Specifically, there has not been a comparative study of the three different 1D PhC structures to compare the influence of layer thickness, number, and refractive index on the ability of the PhCs to control light transmission. Herein, we use the transfer matrix method (TMM) to theoretically examine the transmission of 1D PhCs composed of layers of TiO<sub>2</sub>/SiO<sub>2</sub>, TiO<sub>2</sub>/SnO<sub>2</sub>, SiO<sub>2</sub>/SnO<sub>2</sub>, and combinations of the three with various top and bottom layer thicknesses to cover a substantial region of the electromagnetic spectrum (UV to NIR). With increasing layer numbers for TiO<sub>2</sub>/SiO<sub>2</sub> and SiO<sub>2</sub>/SnO<sub>2</sub>, the edges became sharper and wider and the photonic bandgap width increased. Moreover, we demonstrated that PhCs with significantly thick TiO<sub>2</sub>/SiO<sub>2</sub> layers had a high transmittance for a wide bandgap, allowing for wide-band optical filter applications. These different PhC architectures could enable a variety of applications, depending on the properties needed.

关 键 词:One-Dimensional Photonic Crystal Photonic Bandgap Transfer Matrix Method Optical Filter Metal Oxides 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象