Analysis of Residence Time in the Measurement of Radon Activity by Passive Diffusion in an Open Volume: A Micro-Statistical Approach  被引量:1

Analysis of Residence Time in the Measurement of Radon Activity by Passive Diffusion in an Open Volume: A Micro-Statistical Approach

在线阅读下载全文

作  者:M. P. Silverman 

机构地区:[1]Department of Physics, Trinity College, Hartford, CT, USA

出  处:《World Journal of Nuclear Science and Technology》2017年第4期252-273,共22页核科学与技术国际期刊(英文)

摘  要:Residence time in a flow measurement of radioactivity is the time spent by a pre-determined quantity of radioactive sample in the flow cell. In a recent report of the measurement of indoor radon by passive diffusion in an open volume (i.e. no flow cell or control volume), the concept of residence time was generalized to apply to measurement conditions with random, rather than directed, flow. The generalization, leading to a quantity Δtr, involved use of a) a phenomenological alpha-particle range function to calculate the effective detection volume, and b) a phenomenological description of diffusion by Fick’s law to determine the effective flow velocity. This paper examines the residence time in passive diffusion from the micro-statistical perspective of single-particle continuous Brownian motion. The statistical quantity “mean residence time” Tr is derived from the Green’s function for unbiased single-particle diffusion and is shown to be consistent with Δtr. The finite statistical lifetime of the randomly moving radioactive atom plays an essential part. For stable particles, Tr is of infinite duration, whereas for an unstable particle (such as 222Rn), with diffusivity D and decay rate λ, Tr is approximately the effective size of the detection region divided by the characteristic diffusion velocity . Comparison of the mean residence time with the time of first passage (or exit time) in the theory of stochastic processes shows the conditions under which the two measures of time are equivalent and helps elucidate the connection between the phenomenological and statistical descriptions of radon diffusion.Residence time in a flow measurement of radioactivity is the time spent by a pre-determined quantity of radioactive sample in the flow cell. In a recent report of the measurement of indoor radon by passive diffusion in an open volume (i.e. no flow cell or control volume), the concept of residence time was generalized to apply to measurement conditions with random, rather than directed, flow. The generalization, leading to a quantity Δtr, involved use of a) a phenomenological alpha-particle range function to calculate the effective detection volume, and b) a phenomenological description of diffusion by Fick’s law to determine the effective flow velocity. This paper examines the residence time in passive diffusion from the micro-statistical perspective of single-particle continuous Brownian motion. The statistical quantity “mean residence time” Tr is derived from the Green’s function for unbiased single-particle diffusion and is shown to be consistent with Δtr. The finite statistical lifetime of the randomly moving radioactive atom plays an essential part. For stable particles, Tr is of infinite duration, whereas for an unstable particle (such as 222Rn), with diffusivity D and decay rate λ, Tr is approximately the effective size of the detection region divided by the characteristic diffusion velocity . Comparison of the mean residence time with the time of first passage (or exit time) in the theory of stochastic processes shows the conditions under which the two measures of time are equivalent and helps elucidate the connection between the phenomenological and statistical descriptions of radon diffusion.

关 键 词:RADON Diffusion BROWNIAN Motion Random WALK RESIDENCE TIME First-Passage TIME EXIT TIME 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象