机构地区:[1]3Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia 4Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia [2]Faculty of Science, Universiti Putra Malaysia, Serdang, Malaysia [3]Faculty of Science, Universiti Teknologi Malaysia, Skudai, Malaysia
出 处:《Advances in Bioscience and Biotechnology》2012年第2期158-167,共10页生命科学与技术进展(英文)
摘 要:In-silico and experimental investigations were conducted to explore the effects of substituting hydrophobic residues;Val, Met, Leu, Ile, Trp and Phe into the oxyanion Q114 of T1 lipase. We hypothesized that the oxyanion Q114, involved in substrate binding is also associated with modulation of conformational stability and in conferring specific enzyme attributes. The insilico investigations accurately predicted the quality of the protein packing in some of the variants. Our study found by altering the hydrophobicity of the oxyanion 114, remarkably altered enzyme conformational stability and catalytic attributes. Substitution with Leu resulted improvements in four out of the six tested characteristics. The hydrophobic Leu might have improved local structure folding and increased hydrophobic interactions with other residues in the vicinity of the mutation. The Met variant showed higher activity over the wild-type in hydrolyzing a wider range of natural oils. The bulky amino acids, Phe and Trp negatively affected T1 lipase and resulted in the largest disruption of protein stability and inferior enzyme characteristics. We have successfully illustrated that a single point residue changes at oxyanion 114 could result in a myriad of enzyme attributes, which implied there was some interplay between hydrophobicity and conformation for lipase catalytic functions.In-silico and experimental investigations were conducted to explore the effects of substituting hydrophobic residues;Val, Met, Leu, Ile, Trp and Phe into the oxyanion Q114 of T1 lipase. We hypothesized that the oxyanion Q114, involved in substrate binding is also associated with modulation of conformational stability and in conferring specific enzyme attributes. The insilico investigations accurately predicted the quality of the protein packing in some of the variants. Our study found by altering the hydrophobicity of the oxyanion 114, remarkably altered enzyme conformational stability and catalytic attributes. Substitution with Leu resulted improvements in four out of the six tested characteristics. The hydrophobic Leu might have improved local structure folding and increased hydrophobic interactions with other residues in the vicinity of the mutation. The Met variant showed higher activity over the wild-type in hydrolyzing a wider range of natural oils. The bulky amino acids, Phe and Trp negatively affected T1 lipase and resulted in the largest disruption of protein stability and inferior enzyme characteristics. We have successfully illustrated that a single point residue changes at oxyanion 114 could result in a myriad of enzyme attributes, which implied there was some interplay between hydrophobicity and conformation for lipase catalytic functions.
关 键 词:HYDROPHOBIC RESIDUE T1 Lipase OXYANION Conformational Stability CATALYTIC POCKET
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...