Transient expression of the <i>Arabidopsis thaliana</i>callose synthase PMR4 increases penetration resistance to powdery mildew in barley  被引量:4

Transient expression of the <i>Arabidopsis thaliana</i>callose synthase PMR4 increases penetration resistance to powdery mildew in barley

在线阅读下载全文

作  者:Antje Blümke Shauna C. Somerville Christian A. Voigt 

机构地区:[1]Energy Biosciences Institute, University of California, Berkeley, USA [2]Phytopatholgy and Biochemistry, Biocenter Klein Flottbek, University of Hamburg, Hamburg, Germany

出  处:《Advances in Bioscience and Biotechnology》2013年第8期810-813,共4页生命科学与技术进展(英文)

摘  要:Localized cell wall thickenings, so called papillae, are a common plant defense response to fungal attack at sites of penetration of the plant cell. The major constituent of papillae is callose, a (1,3)-β-glucan polymer, which contributes to slowing or blocking the invading fungal hyphae. In the model plant Arabidopsis thaliana, we could recently show that the overexpression of PMR4(POWDERY MILDEW RESITANT 4), which encodes a stress induced callose synthase, results in complete powdery mildew resistance. To evaluate if these findings are also transferable to monocot crops, we transiently expressed PMR4 under control of the 35S promoter in leaves of barley (Hordeum vulgare) seedlings, which were subsequently inoculated with the virulent powdery mildew Blumeria graminis f. sp. hordei. Fusion of the green fluorescent protein (GFP) to PMR4 allowed the identification of successfully transformed barley cells, which showed an increased penetration resistance to B. graminis compared to control cells that express only GFP.PMR4-GFP localized in a similar pattern at the site of attempted fungal penetration as observed inA. thaliana, which suggests that similar transport mechanisms of the callose synthase might exist in dicot and monocot plants.Localized cell wall thickenings, so called papillae, are a common plant defense response to fungal attack at sites of penetration of the plant cell. The major constituent of papillae is callose, a (1,3)-β-glucan polymer, which contributes to slowing or blocking the invading fungal hyphae. In the model plant Arabidopsis thaliana, we could recently show that the overexpression of PMR4(POWDERY MILDEW RESITANT 4), which encodes a stress induced callose synthase, results in complete powdery mildew resistance. To evaluate if these findings are also transferable to monocot crops, we transiently expressed PMR4 under control of the 35S promoter in leaves of barley (Hordeum vulgare) seedlings, which were subsequently inoculated with the virulent powdery mildew Blumeria graminis f. sp. hordei. Fusion of the green fluorescent protein (GFP) to PMR4 allowed the identification of successfully transformed barley cells, which showed an increased penetration resistance to B. graminis compared to control cells that express only GFP.PMR4-GFP localized in a similar pattern at the site of attempted fungal penetration as observed inA. thaliana, which suggests that similar transport mechanisms of the callose synthase might exist in dicot and monocot plants.

关 键 词:Biotic Stress CALLOSE Glucan Fungal Resistance PLANT Defense PLANT Engineering 

分 类 号:R73[医药卫生—肿瘤]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象